2019
Authors
Leite, P; Silva, R; Matos, A; Pinto, AM;
Publication
2019 19TH IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2019)
Abstract
Autonomous Surface Vehicles (ASVs) provide the ideal platform to further explore the many opportunities in the cargo shipping industry, by making it more profitable and safer. This paper presents an architecture for the autonomous docking operation, formed by two stages: a maneuver module and, a situational awareness system to detect a mooring facility where an ASV can safely dock. Information retrieved from a 3D LIDAR, IMU and GPS are combined to extract the geometric features of the floating platform and to estimate the relative positioning and orientation of the moor to the ASV. Then, the maneuver module plans a trajectory to a specific position and guarantees that the ASV will not collide with the mooring facility. The approach presented in this paper was validated in distinct environmental and weather conditions such as tidal waves and wind. The results demonstrate the ability of the proposed architecture for detecting the docking platform and safely conduct the navigation towards it, achieving errors up to 0.107 m in position and 6.58 degrees in orientation.
2019
Authors
Silva, R; Leite, P; Campos, D; Pinto, AM;
Publication
2019 19TH IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2019)
Abstract
Shipping transportation mode needs to be even more efficient, profitable and secure as more than 80% of the world's trade is done by sea. Autonomous ships will provide the possibility to eliminate the likelihood of human error, reduce unnecessary crew costs and increase the efficiency of the cargo spaces. Although a significant work is being made, and new algorithms are arising, they are still a mirage and still have some problems regarding safety, autonomy and reliability. This paper proposes an online obstacle avoidance algorithm for Autonomous Surfaces Vehicles (ASVs) introducing the reachability with the protective zone concepts. This method estimates a collision-free velocity based on inner and outer constraints such as, current velocity, direction, maximum speed and turning radius of the vehicle, position and dimensions of the surround obstacles as well as a movement prediction in a close future. A non-restrictive estimative for the speed and direction of the ASV is calculated by mapping a conflict zone, determined by the course of the vehicle and the distance to obstacles that is used to avoid imminent dangerous situations. A set of simulations demonstrates the ability of this method to safely circumvent obstacles in several scenarios with different weather conditions.
2020
Authors
Leite, PN; Silva, RJ; Campos, DF; Pinto, AM;
Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
A dense and accurate disparity map is relevant for a large number of applications, ranging from autonomous driving to robotic grasping. Recent developments in machine learning techniques enable us to bypass sensor limitations, such as low resolution, by using deep regression models to complete otherwise sparse representations of the 3D space. This article proposes two main approaches that use a single RGB image and sparse depth information gathered from a variety of sensors/techniques (stereo, LiDAR and Light Stripe Ranging (LSR)): a Convolutional Neural Network (CNN) and a cascade architecture, that aims to improve the results of the first. Ablation studies were conducted to infer the impact of these depth cues on the performance of each model. The models trained with LiDAR sparse information are the most reliable, achieving an average Root Mean Squared Error (RMSE) of 11.8 cm on our own Inhouse dataset; while the LSR proved to be too sparse of an input to compute accurate predictions on its own. © Springer Nature Switzerland AG 2020.
2020
Authors
Silva, RJ; Leite, PN; Pinto, AM;
Publication
2020 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2020)
Abstract
The use of robotic solutions in tasks such as the inspection and monitorization of offshore wind farms aims to, not only mitigate the involved risks, but also to reduce the costs of operating and maintaining these structures. Performing a complete inspection of the platforms in useful time is crucial. Therefore, multiple agents can prove to be a cost-effective solution. This work proposes a trajectory planning algorithm, based on the Ant Colony metaheuristic, capable of optimizing the number of Autonomous Surface Vehicles (ASVs) to be used, and their corresponding route. Experiments conducted on a simulated environment, representative of the real scenario, proves this approach to be successful in planning a trajectory that is able to select the appropriate number of agents and the trajectory of each agent that avoids collisions and at the same time guarantees the full observation of the offshore structures.
2021
Authors
Agostinho, LR; Ricardo, NC; Silva, RJ; Pinto, AM;
Publication
2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)
Abstract
In recent years, autonomous underwater vehicles (AUVs) have gained prominence in the most varied fields of application of underwater missions. The most common solution for recharging their batteries still implies removing them from the water, which is exceptionally costly. The use of Inductive Power Transfer (IPT) technologies allows to mitigate the associated costs and to extend the vehicles' operation time. In consequence, a prototype has been developed, whose objective is to integrate commercially available IPT technologies, while allowing the employment by most of the AUVs. The prototype is a funnel structure and its counterpart aimed to be fixed to a docking station and the AUV respectively. When coupled, it enables the batteries to recharge by electromagnetic induction. Energy transmission has been tested, resulting in encouraging results. This particular solution achieved over 90% efficiency during underwater experiments. The next objective will be to develop a commercial version of the prototype, that allows a direct, practical and effective use of wireless charging technologies within this particular scenario.
2020
Authors
Claro, R; Silva, R; Pinto, A;
Publication
GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST
Abstract
This paper presents an algorithm for mapping monopiles from Offshore Wind Farms (OWF). The ASV (Autonomous Surface Vehicle) surveys the environment, detects and localizes monopiles using situational awareness system based on LiDAR, GPS and IMU (Inertial Measurement Unit) data. The position of the monopile is obtained based on the relative localization between the extrapolated center of the structure that was detected and the ASV. A positive detection of a monopile is referenced to a global positioning frame based on the GPS. Results in a simulator environment demonstrate the ability of this situational awareness system to identify monopiles with a precision of 0.005 m, which is relevant for detecting structural disalignments over time that might be caused by the appearance of scour in the structure's foundation.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.