Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Pedro Nuno

2020

Detecting Docking-based Structures for Persistent ASVs using a Volumetric Neural Network

Authors
Pereira, MI; Leite, PN; Pinto, AM;

Publication
GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST

Abstract
In recent years, research concerning the operation of Autonomous Surface Vehicles (ASVs) has seen an upward trend, although the full-scale application of this type of vehicles still encounters diverse limitations. In particular, the docking and undocking processes of an ASV are tasks that currently require human intervention. Aiming to take one step further towards enabling a vessel to dock autonomously, this article presents a Deep Learning approach to detect a docking structure in the environment surrounding the vessel. The work also included the acquisition of a dataset composed of LiDAR scans and RGB images, along with IMU and GPS information, obtained in simulation. The developed network achieved an accuracy of 95.99%, being robust to several degrees of Gaussian noise, with an average accuracy of 9334% and a deviation of 5.46% for the worst case.

2021

Exploiting Motion Perception in Depth Estimation Through a Lightweight Convolutional Neural Network

Authors
Leite, PN; Pinto, AM;

Publication
IEEE ACCESS

Abstract
Understanding the surrounding 3D scene is of the utmost importance for many robotic applications. The rapid evolution of machine learning techniques has enabled impressive results when depth is extracted from a single image. High-latency networks are required to achieve these performances, rendering them unusable for time-constrained applications. This article introduces a lightweight Convolutional Neural Network (CNN) for depth estimation, NEON, designed for balancing both accuracy and inference times. Instead of solely focusing on visual features, the proposed methodology exploits the Motion-Parallax effect to combine the apparent motion of pixels with texture. This research demonstrates that motion perception provides crucial insight about the magnitude of movement for each pixel, which also encodes cues about depth since large displacements usually occur when objects are closer to the imaging sensor. NEON's performance is compared to relevant networks in terms of Root Mean Squared Error (RMSE), the percentage of correctly predicted pixels (delta(1)) and inference times, using the KITTI dataset. Experiments prove that NEON is significantly more efficient than the current top ranked network, estimating predictions 12 times faster; while achieving an average RMSE of 3.118 m and a delta(1) of 94.5%. Ablation studies demonstrate the relevance of tailoring the network to use motion perception principles in estimating depth from image sequences, considering that the effectiveness and quality of the estimated depth map is similar to more computational demanding state-of-the-art networks. Therefore, this research proposes a network that can be integrated in robotic applications, where computational resources and processing-times are important constraints, enabling tasks such as obstacle avoidance, object recognition and robotic grasping.

2023

NEREON - An Underwater Dataset for Monocular Depth Estimation

Authors
Dionisio, JMM; Pereira, PNAAS; Leite, PN; Neves, FS; Tavares, JMRS; Pinto, AM;

Publication
OCEANS 2023 - LIMERICK

Abstract
Structures associated with offshore wind energy production require an arduous and cyclical inspection and maintenance (O&M) procedure. Moreover, the harsh challenges introduced by sub-sea phenomena hamper visibility, considerably affecting underwater missions. The lack of quality 3D information within these environments hinders the applicability of autonomous solutions in close-range navigation, fault inspection and intervention tasks since these have a very poor perception of the surrounding space. Deep learning techniques are widely used to solve these challenges in aerial scenarios. The developments in this subject are limited regarding underwater environments due to the lack of publicly disseminated underwater information. This article presents a new underwater dataset: NEREON, containing both 2D and 3D data gathered within real underwater environments at the ATLANTIS Coastal Test Centre. This dataset is adequate for monocular depth estimation tasks, which can provide useful information during O&M missions. With this in mind, a benchmark comparing different deep learning approaches in the literature was conducted and presented along with the NEREON dataset.

2024

Enhancing Underwater Inspection Capabilities: A Learning-Based Approach for Automated Pipeline Visibility Assessment

Authors
Mina, J; Leite, PN; Carvalho, J; Pinho, L; Gonçalves, EP; Pinto, AM;

Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2

Abstract
Underwater scenarios pose additional challenges to perception systems, as the collected imagery from sensors often suffers from limitations that hinder its practical usability. One crucial domain that relies on accurate underwater visibility assessment is underwater pipeline inspection. Manual assessment is impractical and time-consuming, emphasizing the need for automated algorithms. In this study, we focus on developing learning-based approaches to evaluate visibility in underwater environments. We explore various neural network architectures and evaluate them on data collected within real subsea scenarios. Notably, the ResNet18 model outperforms others, achieving a testing accuracy of 93.5% in visibility evaluation. In terms of inference time, the fastest model is MobileNetV3 Small, estimating a prediction within 42.45 ms. These findings represent significant progress in enabling unmanned marine operations and contribute to the advancement of autonomous underwater surveillance systems.

  • 2
  • 2