Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Susana Novais

2016

Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors

Authors
Novais, S; Nascimento, M; Grande, L; Domingues, MF; Antunes, P; Alberto, N; Leitao, C; Oliveira, R; Koch, S; Kim, GT; Passerini, S; Pinto, J;

Publication
SENSORS

Abstract
The integration of fiber Bragg grating (FBG) sensors in lithium-ion cells for in-situ and in-operando temperature monitoring is presented herein. The measuring of internal and external temperature variations was performed through four FBG sensors during galvanostatic cycling at C-rates ranging from 1C to 8C. The FBG sensors were placed both outside and inside the cell, located in the center of the electrochemically active area and at the tab-electrode connection. The internal sensors recorded temperature variations of 4.0 +/- 0.1 degrees C at 5C and 4.7 +/- 0.1 degrees C at 8C at the center of the active area, and 3.9 +/- 0.1 degrees C at 5C and 4.0 +/- 0.1 degrees C at 8C at the tab-electrode connection, respectively. This study is intended to contribute to detection of a temperature gradient in real time inside a cell, which can determine possible damage in the battery performance when it operates under normal and abnormal operating conditions, as well as to demonstrate the technical feasibility of the integration of in-operando microsensors inside Li-ion cells.

2018

Arterial pulses assessed with FBG based films: A smart skin approach

Authors
Leitao, C; Fátima Domingues, M; Novais, S; Tavares, C; Pinto, J; Marques, C; Antunes, P;

Publication
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
Cardiovascular diseases are the main cause of death in the world and its occurrence is closely related to arterial stiffness. Arterial stiffness is commonly evaluated by analysing the arterial pulse waveform and velocity, with electromechanical pressure transducers, in superficial arteries such as carotid, radial and femoral. In order to ease the acquisition procedure and increase the patients comfort during the measurements, new optical fibre techniques have been explored to be used in the reliable detection of arterial pulse waves, due to their small size, high sensitivity, electrical isolation and immunity to electromagnetic interference. More specifically, fibre Bragg gratings (FBGs) are refractive index modulated structures engraved in the core of an optical fibre, which have a well-defined resonance wavelength that varies with the strain conditions of the medium, known as Bragg wavelength. In this work, FBGs were embedded in a commercial resin, producing films that were used to assess the arterial pulse in superficial locations such as carotid, radial and foot dorsum. The technique proved to be a promising, comfortable and trustworthy way to assess the arterial pulses, with all the optical fibre use advantages, in a non-intrusive biomedical sensing procedure. Examples of possible applications of the developed structures are smart skin structures to monitor arterial cardiovascular parameters, in a stable and reliable way, throughout daily activities or even during exams with high electromagnetic fields, such as magnetic resonance imaging. © 2018 SPIE.

2024

Low Coherence Interferometry Measurement: An Algorithm for fast processing with low noise and phase linearisation

Authors
Robalinho, P; Rodrigues, A; Novais, S; Ribeiro, ABL; Silva, S; Frazão, O;

Publication
EPJ Web of Conferences

Abstract
This work proposes a signal processing algorithm to analyse the optical signal from a Low Coherence Interferometric (LCI) system. The system uses a Mach-Zehnder (MZ) interferometer to interrogate a Fabry-Perot cavity, working as an optical sensor. This algorithm is based on the correlation and convolution operations, which allows the signal to be reconstructed based on itself, as well as, on the linearization of the signal phase, allowing the non-linearities of the actuator incorporated on the MZ interferometer to be compensated. The results show a noise reduction of 30 dB in the signal acquired. As a result, a reduction of 8.2 dB in the uncertainty of the measurement of the physical measurand is achieved. It is also demonstrated that the phase linearization made it possible to obtain a coefficient of determination (namely, R-squared) higher than 0.999.

2024

<i>In-situ</i> temperature monitorization in oscillatory flow crystallizer using optical fiber sensors with a Bragg grating inscribed at the fiber tips ends

Authors
Soares, L; Novais, S; Ferreira, A; Frazão, O; Silva, S;

Publication
EPJ Web of Conferences

Abstract
Optical fiber sensors were implemented to measure in-situ temperature variations in an oscillatory flow crystallizer operating in continuous. The sensors were fabricated by cleaved in the middle 8 mm-length fiber Bragg gratings, forming tips with a Bragg grating of 4 mm inscribed at the fiber ends. The geometry of the sensors fabricated, with a diameter of 125 µm, allowed the temperature monitorization of the process flow, inside the crystallizer, at four different points: input, two intermediate points, and output. The results revealed that the proposed technology allows to perform an in-situ and in line temperature monitorization, during all the crystallization process, as an alternative to more expensive and complex technology.

2024

Novel digital signal processing method for data acquired from Low Coherence Interferometry

Authors
Robalinho, P; Rodrigues, A; Novais, S; Ribeiro, AL; Silva, S; Frazão, O;

Publication
IEEE Sensors Journal

Abstract

2024

Phase-Shifted Fiber Bragg Grating by Selective Pitch Slicing

Authors
Robalinho, P; Piaia, V; Soares, L; Novais, S; Ribeiro, AL; Silva, S; Frazão, O;

Publication
Sensors

Abstract
This paper presents a new type of phase-shifted Fiber Bragg Grating (FBG): the sliced-FBG (SFBG). The fabrication process involves cutting a standard FBG inside its grating region. As a result, the last grating pitch is shorter than the others. The optical output signal consists of the overlap between the FBG reflection and the reflection at the fiber-cleaved tip. This new fiber optic device has been studied as a vibration sensor, allowing for the characterization of this sensor in the frequency range of 150 Hz to 70 kHz. How the phase shift in the FBG can be controlled by changing the length of the last pitch is also shown. This device can be used as a filter and a sensing element. As a sensing element, we will demonstrate its application as a vibration sensor that can be utilized in various applications, particularly in monitoring mechanical structures.

  • 8
  • 8