2023
Authors
Homayouni, SM; Fontes, DBMM; Fontes, FACC;
Publication
METAHEURISTICS, MIC 2022
Abstract
Energy-efficient scheduling has become a new trend in industry and academia, mainly due to extreme weather conditions, stricter environmental regulations, and volatile energy prices. This work addresses the energy-efficient Job shop Scheduling Problem with speed adjustable machines. Thus, in addition to determining the sequence of the operations for each machine, one also needs to decide on the processing speed of each operation. We propose a multi-population biased random key genetic algorithm that finds effective solutions to the problem efficiently and outperforms the state-of-the-art solution approaches.
2023
Authors
Fontes, DBMM; Homayouni, SM; Goncalves, JF;
Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
Abstract
This work addresses a variant of the job shop scheduling problem in which jobs need to be transported to the machines processing their operations by a limited number of vehicles. Given that vehicles must deliver the jobs to the machines for processing and that machines need to finish processing the jobs before they can be transported, machine scheduling and vehicle scheduling are intertwined. A coordi-nated approach that solves these interrelated problems simultaneously improves the overall performance of the manufacturing system. In the current competitive business environment, and integrated approach is imperative as it boosts cost savings and on-time deliveries. Hence, the job shop scheduling problem with transport resources (JSPT) requires scheduling production operations and transport tasks simultane-ously. The JSPT is studied considering the minimization of two alternative performance metrics, namely: makespan and exit time. Optimal solutions are found by a mixed integer linear programming (MILP) model. However, since integrated production and transportation scheduling is very complex, the MILP model can only handle small-sized problem instances. To find good quality solutions in reasonable com-putation times, we propose a hybrid particle swarm optimization and simulated annealing algorithm (PSOSA). Furthermore, we derive a fast lower bounding procedure that can be used to evaluate the perfor-mance of the heuristic solutions for larger instances. Extensive computational experiments are conducted on 73 benchmark instances, for each of the two performance metrics, to assess the efficacy and efficiency of the proposed PSOSA algorithm. These experiments show that the PSOSA outperforms state-of-the-art solution approaches and is very robust.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
2023
Authors
Fontes, DBMM; Homayouni, SM;
Publication
FLEXIBLE SERVICES AND MANUFACTURING JOURNAL
Abstract
This work formulates a mixed-integer linear programming (MILP) model and proposes a bi-objective multi-population biased random key genetic algorithm (mp-BRKGA) for the joint scheduling of quay cranes and speed adjustable vehicles in container terminals considering the dual-cycling strategy. Under such a strategy, a combination of loading and unloading containers are handled by a set of cranes (moved between ships and vehicles) and transported by a set of vehicles (transported between the quayside and the storage area). The problem consists of four components: crane scheduling, vehicle assignment, vehicle scheduling, and speed assignment both for empty and loaded journey legs. The results show that an approximated true Pareto front can be found by solving the proposed MILP model and that the mp-BRKGA finds uniformly distributed Pareto fronts, close to the true ones. Additionally, the results clearly demonstrate the advantages of considering speed adjustable vehicles since both the makespan and the energy consumption can be considerably reduced.
2023
Authors
Piqueiro, H; Gomes, R; Santos, R; de Sousa, JP;
Publication
SUSTAINABILITY
Abstract
To design and deploy their supply chains, companies must naturally take quite different decisions, some being strategic or tactical, and others of an operational nature. This work resulted in a decision support system for optimising a biomass supply chain in Portugal, allowing a more efficient operations management, and enhancing the design process. Uncertainty and variability in the biomass supply chain is a critical issue that needs to be considered in the production planning of bioenergy plants. A simulation/optimisation framework was developed to support decision-making, by combining plans generated by a resource allocation optimisation model with the simulation of disruptive wildfire scenarios in the forest biomass supply chain. Different scenarios have been generated to address uncertainty and variability in the quantity and quality of raw materials in the different supply nodes. Computational results show that this simulation/optimisation approach can have a significant impact in the operations efficiency, particularly when disruptions occur closer to the end of the planning horizon. The approach seems to be easily scalable and easy to extend to other sectors.
2023
Authors
Fontes, T; Murcos, F; Carneiro, E; Ribeiro, J; Rossetti, RJF;
Publication
IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS
Abstract
This work presents a deep learning framework for analyzing urban mobility by extracting knowledge from messages collected from Twitter. The framework, which is designed to handle large-scale data and adapt automatically to new contexts, comprises three main modules: data collection and system configuration, data analytics, and aggregation and visualization. The text data is pre-processed using NLP techniques to remove informal words, slang, and misspellings. A pre-trained, unsupervised word embedding model, BERT, is used to classify travel-related tweets using a unigram approach with three dictionaries of travel-related target words: small, medium, and big. Public opinion is evaluated using VADER to classify travel-related tweets according to their sentiments. The mobility of three major cities was assessed: London, Melbourne, and New York. The framework demonstrates consistently high average performance, with a Precision of 0.80 for text classification and 0.77 for sentiment analysis. The framework can aggregate sparse information from social media and provide updated information in near real-time with high spatial resolution, enabling easy identification of traffic-related events. The framework is helpful for transportation decision-makers in operational control, tactical-strategic planning, and policy evaluation. For example, it can be used to improve the management of resources during traffic congestion or emergencies.
2023
Authors
Gomes, AMS; de Sousa, PSA; Moreira, MDA;
Publication
ENVIRONMENTAL & SOCIO-ECONOMIC STUDIES
Abstract
This study examined the relationship between Environmental Performance (EP) and Financial Performance (FP) in the European food industry. The food industry is essential for population sustenance, but the rising population and the consequent increase in food production demand have implications for climate change. The aim of this study was to determine if businesses that consume water more efficiently and have lower CO2 emission intensities might experience improved financial performance. Financial and environmental data were sourced from external databases and company reports, and both quantile regression and correlation analyses were conducted. The results reveal that various sectors within the food industry exhibit different linkages between Environmental Performance and Financial Performance. Furthermore, our findings indicate that water use efficiency can significantly influence financial performance, either positively or negatively, while CO2 emission intensity did not exhibit a definitive impact on Financial Performance.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.