2024
Authors
Sousa, C; Ferreira, R; Pinto, P; Pereira, C; Rebelo, R;
Publication
Procedia Computer Science
Abstract
This paper discusses the Digital Product Passport (DPP) as a key tool for achieving a circular economy. An architecture of the DPP is presented built upon the principles of data spaces and W3C Decentralized Identifiers (DIDs). By leveraging data spaces, the DPP enables secure and controlled data exchange among stakeholders, fostering transparency, traceability, and collaboration throughout the product's lifecycle. The use of decentralized identifiers ensures the uniqueness and verifiability of product-related information, facilitating seamless access and sharing of data. The DPP architecture offers a promising framework for realizing the circular economy by promoting resource efficiency, sustainable practices, and informed decision-making. © 2024 The Author(s). Published by Elsevier B.V.
2024
Authors
Babo, D; Pereira, C; Carneiro, D;
Publication
INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 2, WORLDCIST 2023
Abstract
Nowadays the concept of digitalization and Industry 4.0 is more and more important, and organizations must improve and adapt their processes and systems in order to keep up to date with the latest paradigm. In this context, there are multiple developed Maturity Models (MMs) to help companies on the processes of evaluating their digital maturity and defining a roadmap to achieve their full potential. However, this is a subject in constant evolution and most of the available MMs don't fill all the needs that a company might have in its transformation process. Thus, European Digital Innovation Hubs (EDIH) arose to support companies on the process of responding to digital challenges and becoming more competitive. Supported by the European Commission and the Digital Transformation Accelerator, they use tools to measure the digital maturity progress of their customers. This paper analyzes several MMs publicly available and compares them to the guidelines provided to the EDIH.
2024
Authors
Santos, A; Garcia, JE; Oliveira, LC; de Araujo, DL; da Fonseca, MJS;
Publication
INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 4, WORLDCIST 2023
Abstract
The online channel, particularly in the food retail area, has been evolving positively and exponentially in the world, including Portugal. Currently, this type of purchase is increasingly part of people's daily lives, even more so with the emergence of the Covid-19 pandemic. Consequently, in Portugal, most companies adopt a multichannel strategy, where the physical store and the online store operate independently from each other. However, it is necessary to rethink this channel integration model, which may go through an omnichannel strategy, where the physical store and the online store operate as a single store, and where several advantages are already recognized in terms of the consumer's shopping experience. The main objective of this study is to understand the strategy implemented by the company studied, Pingo Doce, through an analysis and description of its channels. To better understand the strategy of the company under study, a semi-structured exploratory interview was carried out with one of the people in charge of Pingo Doce's digital channels, to understand the strategy used by the company and thus complement the data obtained through direct observation and bibliographic research. At the end of the work developed it was possible to understand the positioning of Pingo Doce in the online food retail area and their online and offline distribution strategies.
2024
Authors
Santos, A; Bandeira, A; Ramos, P;
Publication
RISKS
Abstract
This study investigates the impact of Research and Development (R&D) investment on the performance of Portuguese companies, specifically addressing the gap in understanding how R&D influences a company's value and performance. We employ a dynamic panel data model estimated using the Generalized Method of Moments (GMM) to account for potential endogeneity issues. This approach allows us to analyze the influence of R&D investment on the Return on Operating Assets (ROA) for Portuguese companies with significant R&D investments between 2012 and 2019. The analysis reveals that while R&D investment itself may not have a statistically significant short-term impact on ROA, lagged financial performance, leverage, asset turnover ratio, and accounts payable turnover all demonstrate a statistically significant relationship with the dependent variable.
2024
Authors
Carvalho, L; Mota, C; Ramos, P;
Publication
RISKS
Abstract
Socially responsible investments, also referred to as ethical or sustainable investments, have experienced rapid global growth in recent years. They represent an investment approach that incorporates social, environmental, and ethical considerations into decision-making processes. Consequently, the significance of socially responsible investments has captured the attention of academics, prompting inquiries into the impact of integrating social criteria on portfolio performance. The primary objective of this work was to conduct a comparative study of the performance between socially responsible and non-socially responsible investment funds, using funds domiciled in Portugal and Spain. Various multi-factor models, including the three-factor model of Fama and French, the four-factor model of Carhart, and the five-factor model of Fama and French, were employed to assess performance. The sample comprised 125 investment funds, with 43 identified as socially responsible and 82 as non-socially responsible. The study's findings indicate that there are no significant differences between socially responsible funds and their conventional counterparts. The majority of funds experience performance alterations during periods of crisis compared to crisis-free periods. Additionally, when comparing non-conditional models with conditional models, an improvement in the explanatory power of the latter is observed. This suggests that the inclusion of the dummy variable enhances the quality of fit for the models.
2024
Authors
Oliveira, JM; Ramos, P;
Publication
MATHEMATICS
Abstract
This study investigates the effectiveness of Transformer-based models for retail demand forecasting. We evaluated vanilla Transformer, Informer, Autoformer, PatchTST, and temporal fusion Transformer (TFT) against traditional baselines like AutoARIMA and AutoETS. Model performance was assessed using mean absolute scaled error (MASE) and weighted quantile loss (WQL). The M5 competition dataset, comprising 30,490 time series from 10 stores, served as the evaluation benchmark. The results demonstrate that Transformer-based models significantly outperform traditional baselines, with Transformer, Informer, and TFT leading the performance metrics. These models achieved MASE improvements of 26% to 29% and WQL reductions of up to 34% compared to the seasonal Na & iuml;ve method, particularly excelling in short-term forecasts. While Autoformer and PatchTST also surpassed traditional methods, their performance was slightly lower, indicating the potential for further tuning. Additionally, this study highlights a trade-off between model complexity and computational efficiency, with Transformer models, though computationally intensive, offering superior forecasting accuracy compared to the significantly slower traditional models like AutoARIMA. These findings underscore the potential of Transformer-based approaches for enhancing retail demand forecasting, provided the computational demands are managed effectively.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.