Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CESE

2024

Human-Centred Technology Management for a Sustainable Future

Authors
Zimmermann, R; Rodrigues, JC; Simoes, A; Dalmarco, G;

Publication
Springer Proceedings in Business and Economics

Abstract

2024

Transitioning trends into action: A simulation-based Digital Twin architecture for enhanced strategic and operational decision-making

Authors
Santos, R; Piqueiro, H; Dias, R; Rocha, CD;

Publication
COMPUTERS & INDUSTRIAL ENGINEERING

Abstract
In the dynamic realm of nowadays manufacturing, integrating digital technologies has become paramount for enhancing operational efficiency and decision-making processes. This article presents a novel system architecture that integrates a Simulation-based Digital Twin (DT) with emerging trends in manufacturing to enhance decision-making, accompanied by a detailed technical approach encompassing protocols and technologies for each component. The DT leverages advanced simulation techniques to model, monitor, and optimize production processes in real time, facilitating both strategic and operational decision-making. Complementing the DT, trending technologies such as artificial intelligence, additive manufacturing, collaborative robots, autonomous vehicles, and connectivity advancements are strategically integrated to enhance operational efficiency and facilitate the adoption of the Manufacturing as a Service (MaaS) paradigm. A case study within a MaaS supplier context, deployed in an industrial laboratory with advanced robotic systems, demonstrates the practical application of optimizing dynamic job-shop configurations using Simulation-based DT, showcasing strategies to improve operational efficiency and resource utilization. The results of the industrial experiment were highly encouraging, underscoring the potential for extension to more intricate industrial systems, with particular emphasis on incorporating sustainability and remanufacturing principles.

2024

Enhancing Smart Manufacturing Systems: A Digital Twin Approach Employing Simulation, Flexible Robots and Additive Manufacturing Technologies

Authors
Santos, R; Rocha, C; Dias, R; Quintas, J;

Publication
SIMULATION FOR A SUSTAINABLE FUTURE, PT 1, EUROSIM 2023

Abstract
A new generation of manufacturing systems is emerging through the adoption of new policies to overcome future crises highlighted by constant social, environmental, and economic concerns. The rise of so-called smart manufacturing is noticeable. However, new risks to humankind are being introduced, and, more than ever, science and technology are required to guarantee the future sustainability and resilience of our manufacturing systems. This research presents a Digital Twin approach resorting to simulation models with embedded intelligence to transform efficient manufacturing systems and react to complex and unpredictable circumstances. The methodology covers production scheduling incorporating flexible robots, internal logistics supervision contemplating planning and control of mobile robots, and capacity management. The method demonstrates the potential of integrating Additive Manufacturing technologies to quickly react to production needs. The developed strategy was enforced and assessed in an industrial experiment, exhibiting its robustness and promising application. The attained results were very encouraging, highlighting its potential extension to more complex industrial systems.

2024

Inventory Strategies for Optimizing Resiliency and Sustainability in Pharmaceutical Supply Chains – A Simulation-Optimization Approach

Authors
Marques C.M.; Silva A.C.; de Sousa J.P.;

Publication
Computer Aided Chemical Engineering

Abstract
In this work a hybrid simulation-optimization approach is presented to support decision-making towards improved resiliency and sustainability in pharmaceutical supply chain (PSC) operations. In a first step, a simulation model is used to assess the PSC performance under a set of disruptive scenarios to select the best inventory-based strategy for enhanced resiliency. Disruptions addressed in this work are mainly related to unpredicted medium-term production stoppages due to unexpected high-impact events such as accidents in production and transportation, or natural disasters. In a second step, a multi-objective mixed integer linear programming (MO-MILP) model is developed to optimize the selected inventory-based strategy regarding the economic, social, and environmental dimensions. In particular, the social and environmental aspects are introduced by anticipating the expected waste generation of close to expire medicines, redirecting them into a donation scheme. The proposed approach is applied to a representative PSC, with preliminary results showing the relevance of this tool for decision-makers to assess the trade-offs associated to the economic and social dimensions, as well as their impacts on waste generation.

2024

Unlocking the potential of digital twins to achieve sustainability in seaports: the state of practice and future outlook

Authors
Homayouni, SM; de Sousa, JP; Marques, CM;

Publication
WMU JOURNAL OF MARITIME AFFAIRS

Abstract
This paper examines the role of digital twins (DTs) in promoting sustainability within seaport operations and logistics. DTs have emerged as promising tools for enhancing seaport performance. Despite the recognized potential of DTs in seaports, there is a paucity of research on their practical implementation and impact on seaport sustainability. Through a systematic literature review, this study seeks to elucidate how DTs contribute to the sustainability of seaports and to identify future research and practical applications. We reviewed and categorized 68 conceptual and practical digital applications into ten core areas that effectively support economic, social, and environmental objectives in seaports. Furthermore, this paper proposes five preliminary potential applications for DTs where practical implementations are currently lacking. The primary findings indicate that DTs can enhance seaport sustainability by facilitating real-time monitoring and decision-making, improving safety and security, optimizing resource utilization, enhancing collaboration and communication, and supporting the development of the seaport ecosystem. Additionally, this study addresses the challenges associated with DT implementation, including high costs, conflicting stakeholder priorities, data quality and availability, and model validation. The paper concludes with a discussion of the implications for seaport managers and policymakers.

2024

Human-Centred Decision Support System for Improved Picking-by-Line Warehouse Operations

Authors
Silva, C; Santos, F; Senna, P; Borges, M; Marques, M;

Publication
Springer Proceedings in Business and Economics

Abstract
Warehouses and distribution centres play a key role in any Supply Chain, particularly in the retail sector, where a network of stores needs to be replenished in a highly dynamic and increasingly uncertain context. In this regard, companies need to improve their intralogistics systems daily to ensure long-term competitiveness and sustainable growth. This is especially true in picking-by-line systems where many time-consuming and manual tasks are usually involved. This study introduces a new decision support tool based on simulation methods to aid the decision-making process in a picking-by-Line system, aimed to improve the overall picking operations efficiency, through human-centric perspective. A Discrete-Event-Simulation model is proposed to assess a set of parameters under several scenarios, driving a more informed decision-making process towards cost-effective strategies. The proposed approach was validated through an empirical case study showing its effectiveness in assisting operational planning decisions related to capacity and resource allocation. The system demonstrates promising versatility for application across varied warehouse environments. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

  • 9
  • 219