Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CESE

2027

COGNITIVE WORKLOAD AND FATIGUE IN A HUMAN-ROBOT COLLABORATIVE ASSEMBLY WORKSTATION: A PILOT STUDY

Authors
Joana Santos; Mariana Ferraz; Ana Pinto; Luis F. Rocha; Carlos M. Costa; Ana C. Simões; Klass Bombeke; M.A.P. Vaz;

Publication
International Symposium on Occupational Safety and Hygiene: Proceedings Book of the SHO2023

Abstract

2025

More than tools: video lecture capture as a step towards pedagogic differentiation

Authors
Veiga, A; Gomes, AM; Remiao, F;

Publication
JOURNAL OF APPLIED RESEARCH IN HIGHER EDUCATION

Abstract
PurposeThe present study aims to analyse the presumed relationship between VLC use and students' grades.Design/methodology/approachThe research strategy unfolds as a case study (Yin, 1994), framed by how undergraduate students of pharmaceutical sciences used video lecture capture (VLC) and the impact of VLC on pedagogic differentiation. Looking at the course of Mechanistic Toxicology (MecTox), the objective is to describe this case of pharmaceutical sciences in depth.FindingsThe findings reveal that over 90% of students engaged with VLC videos, with the average viewing time exceeding the total available video minutes, indicating strong student engagement. The study particularly highlights VLC's positive impact on students with lower academic performance (grades D and E), suggesting that VLC can help reduce the performance gap and support a more inclusive educational environment.Research limitations/implicationsThe findings may have limited generalisability beyond the specific context and sample used. However, this study allows the research findings to be compared with previous research (Remi & atilde;o et al., 2022), contributing to the debate on how pedagogic research can promote evidence-based decisions regarding innovative strategies. The meaning of educational inclusion processes and diversity is, thus, contingent on the institutionalisation of research as a practice of teaching and learning.Practical implicationsThe results of this study thus provide interesting insights for the design of strategic action, considering the diversity of students as seen in parents' academic qualifications and students' conditions (e.g. student-workers, living away from home, holding a grant of economic and social support).Social implicationsThe implications of research findings for society bring the issue of equity in education to the fore. By addressing the diverse needs of students, HEIs can contribute to greater educational equity.Originality/valueUsing VLC as a differentiated pedagogic device might give diversity real content insofar as institutional and national policies can mitigate the possible negative effects of parents' low academic qualifications and the students' conditions of living away from their residence area and holding a grant of economic and social support.

2025

Extensible Data Ingestion System for Industry 4.0

Authors
Oliveira, B; Oliveira, Ó; Peixoto, T; Ribeiro, F; Pereira, C;

Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
Industry 4.0 promotes a paradigm shift in the orchestration, oversight, and optimization of value chains across product and service life cycles. For instance, leveraging large-scale data from sensors and devices, coupled with Machine Learning techniques can enhance decision-making and facilitate various improvements in industrial settings, including predictive maintenance. However, ensuring data quality remains a significant challenge. Malfunctions in sensors or external factors such as electromagnetic interference have the potential to compromise data accuracy, thereby undermining confidence in related systems. Neglecting data quality not only compromises system outputs but also contributes to the proliferation of bad data, such as data duplication, inconsistencies, or inaccuracies. To consider these problems is crucial to fully explore the potential of data in Industry 4.0. This paper introduces an extensible system designed to ingest, organize, and monitor data generated by various sources, focusing on industrial settings. This system can serve as a foundation for enhancing intelligent processes and optimizing operations in smart manufacturing environments. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

Transformer-Based Models for Probabilistic Time Series Forecasting with Explanatory Variables

Authors
Caetano, R; Oliveira, JM; Ramos, P;

Publication
MATHEMATICS

Abstract
Accurate demand forecasting is essential for retail operations as it directly impacts supply chain efficiency, inventory management, and financial performance. However, forecasting retail time series presents significant challenges due to their irregular patterns, hierarchical structures, and strong dependence on external factors such as promotions, pricing strategies, and socio-economic conditions. This study evaluates the effectiveness of Transformer-based architectures, specifically Vanilla Transformer, Informer, Autoformer, ETSformer, NSTransformer, and Reformer, for probabilistic time series forecasting in retail. A key focus is the integration of explanatory variables, such as calendar-related indicators, selling prices, and socio-economic factors, which play a crucial role in capturing demand fluctuations. This study assesses how incorporating these variables enhances forecast accuracy, addressing a research gap in the comprehensive evaluation of explanatory variables within multiple Transformer-based models. Empirical results, based on the M5 dataset, show that incorporating explanatory variables generally improves forecasting performance. Models leveraging these variables achieve up to 12.4% reduction in Normalized Root Mean Squared Error (NRMSE) and 2.9% improvement in Mean Absolute Scaled Error (MASE) compared to models that rely solely on past sales. Furthermore, probabilistic forecasting enhances decision making by quantifying uncertainty, providing more reliable demand predictions for risk management. These findings underscore the effectiveness of Transformer-based models in retail forecasting and emphasize the importance of integrating domain-specific explanatory variables to achieve more accurate, context-aware predictions in dynamic retail environments.

2025

Human-Centred Technology Management for a Sustainable Future

Authors
Zimmermann, R; Rodrigues, JC; Simoes, A; Dalmarco, G;

Publication
Springer Proceedings in Business and Economics

Abstract

2025

Industry 4.0 Technologies Revolutionising Footwear: Paving the Path to Circularity Through Innovative Services

Authors
Monteiro, L; Simões, AC; Baptista, J; Rebelo, R;

Publication
Springer Proceedings in Business and Economics

Abstract
The footwear industry, a sub-sector of textile industrial sector, faces increased pressures towards higher levels of sustainability and circularity along all the value chain. Along the last decades, shoe products have become more complex products, integrating a greater number of components, materials diversity and often long supply-chains related to cost reduction and production or sourcing delocalization strategies. Full value-chain digitalization, as a cornerstone of Industry 4.0 paradigm, plays a key role for leveraging more sustainable and circular products, namely by traceability operationalization and forthcoming instruments such as Digital Product Passport. This research studied, via a state-of-art framing of the challenges followed by qualitative approach, how Industry 4.0 technologies can support the development of new services that contribute to sustainable and circular practices in footwear companies. An interview-based survey was conducted to 6 footwear companies, to map the adoption level of Industry 4.0 technologies and cross-linking to circular services business models. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

  • 1
  • 219