2019
Authors
Tosin, R; Pocas, I; Cunha, M;
Publication
OPEN AGRICULTURE
Abstract
The dynamic effects of kaolin clay particle film application on the temperature and spectral reflectance of leaves of two autochthonous cultivars (Touriga Nacional (TN, n=32) and Touriga Franca (TF, n=24)) were studied in the Douro wine region. The study was implemented in 2017, in conditions prone to multiple environmental stresses that include excessive light and temperature as well as water shortage. Light reflectance from kaolin-sprayed leaves was higher than the control (leaves without kaolin) on all dates. Kaolin's protective effect over leaves' temperatures was low on the 20 days after application and ceased about 60 days after its application. Differences between leaves with and without kaolin were explained by the normalized maximum leaf temperature (T_max_f_N), reflectance at 400 nm, 532 nm, and 737 nm, as assessed through TN data. The wavelengths of 532 nm and 737 nm are associated with plant physiological processes, which support the selection of these variables for assessing kaolin's effects on leaves. The application of principal component analysis to the TF data, based on these four variables (T_max_f_N and reflectances: 400, 532, 737 nm) selected for TN, explained 83.56% of data variability (considering two principal components), obtaining a clear differentiation between leaves with and without kaolin. The T_max_f_N and the reflectance at 532 nm were the variables with a greater contribution for explaining data variability. The results improve the understanding of the vines' response to kaolin throughout the grapevine cycle and support decisions about the re-application timing.
2020
Authors
Pocas, I; Tosin, R; Goncalves, I; Cunha, M;
Publication
AGRICULTURAL AND FOREST METEOROLOGY
Abstract
The predawn leaf water potential (psi(pd)) is an eco-physiological indicator widely used for assessing vines water status and thus supporting irrigation management in several wine regions worldwide. However, the.pd is measured in a short time period before sunrise and the collection of a large sample of points is necessary to adequately represent a vineyard, which constitute operational constraints. In the present study, an alternative method based on hyperspectral data derived from a handheld spectroradiometer and machine learning algorithms was tested and validated for assessing grapevine water status. Two test sites in Douro wine region, integrating three grapevine cultivars, were studied for the years of 2014, 2015, and 2017. Four machine learning regression algorithms were tested for predicting the psi(pd) as a continuous variable, namely Random Forest (RF), Bagging Trees (BT), Gaussian Process Regression (GPR), and Variational Heteroscedastic Gaussian Process Regression (VH-GPR). Three predicting variables, including two vegetation indices (NRI554,561 and WI900,970) and a time-dynamic variable based on the psi(pd) (psi(pd_0)), were applied for modelling the response variable (psi(pd)). Additionally, the predicted values of psi(pd) were aggregated into three classes representing different levels of water deficit (low, moderate, and high) and compared with the corresponding classes of.pd observed values. A root mean square error (RMSE) and a mean absolute error (MAE) lower or equal than 0.15 MPa and 0.12 MPa, respectively, were obtained with an external validation data set (n= 71 observations) for the various algorithms. When the modelling results were assessed through classes of values, a high overall accuracy was obtained for all the algorithms (82-83%), with prediction accuracy by class ranging between 79% and 100%. These results show a good performance of the predictive models, which considered a large variability of climatic, environmental, and agronomic conditions, and included various grape cultivars. By predicting both continuous values of.pd and classes of psi(pd), the approach presented in this study allowed obtaining 2-levels of accurate information about vines water status, which can be used to feed management decisions of different types of stakeholders.
2020
Authors
Tosin, R; Pocas, I; Goncalves, I; Cunha, M;
Publication
VITIS
Abstract
Hyperspectral data collected through a handheld spectroradiometer (400-1010 nm) were tested for assessing the grapevine predawn leaf water potential (psi(pd)) measured by a Scholander chamber in two test sites of Douro wine region. The study was implemented in 2017, being a year with very hot and dry summer, conditions prone to severe water shortage. Three grapevine cultivars, 'Touriga Nacional', 'Touriga Franca' and 'Tinta Barroca' were sampled both in rainfed and irrigated vineyards, with a total of 325 plants assessed in four post-flowering dates. A large set of vegetation indices computed with the hyperspectral data and optimized for the psi(pd) values, as well as structural variables, were used as predictors in the model. From a total of 631 possible predictors, four variables were selected based on a stepwise forward procedure and the Wald statistics: irrigation treatment, test site, Anthocyanin Reflectance Index Optimized (ARI(opt_656,647)) and Normalized Ratio Index (NRI711,700). An ordinal logistic regression model was calibrated using 70 % of the dataset randomly selected and the 30 of the remaining observations where used in model validation. The overall model accuracy obtained with the validation dataset was 73.2 %, with the class of psi(pd) corresponding to the high-water deficit presenting a positive prediction value of 79.3 %. The accuracy and operability of this predictive model indicates good perspectives for its use in the monitoring of grapevine water status, and to support the irrigation tasks.
2021
Authors
Tosin, R; Pocas, I; Novo, H; Teixeira, J; Fontes, N; Graca, A; Cunha, M;
Publication
SCIENTIA HORTICULTURAE
Abstract
Predawn leaf water potential (Psi(pd)) is widely used to assess plant water status. Also, pigments concentration work as proxy of canopy's water status. Spectral data methods have been applied to monitor and assess crop's biophysical variables. This work developed two models to estimate Psi(pd) using a hand-held spectroradiometer (400-1010 nm) to obtain canopy and foliar reflectance in four dates of 2018 and a pressure chamber to measure Psi(pd). Two modelling approaches, combining spectral data and several machine learning algorithms (MLA), were used to estimate Psi(pd) in a commercial vineyard in the Douro Wine Region. The first approach estimated Psi(pd) through vine's canopy reflectance; several vegetation indices (VIs) were computed and selected, namely the SPVi(opt)(1_)(950;596;521;) SPVIopt2_896;880;901; PRI_CI2(opt_539;560,573;716 )and NPCIopt_983;972, as well as a time-dynamic variable based on Psi(pd) (Psi(pd)_(0)). The second modelling approach is based on pigments' concentrations; several VIs were optimized for non-correlated pigments of vine's leaves, assessed by its hyperspectral reflectance. The following variables for Psi(pd) estimation were selected through stepwise forward method: Psi(pd)_(0); NRIgreen_LUT520;532; NRIgreen_LWC540;551. The B-MARS algorithm performed the best results for both modelling approaches, presenting a RRMSE in both validation modelling approaches between 13-14%.
2022
Authors
Tosin, R; Martins, R; Pocas, I; Cunha, M;
Publication
BIOSYSTEMS ENGINEERING
Abstract
This paper focuses on predicting predawn leaf water potential through a self-learning artificial intelligence (SL-AI) algorithm, a novel spectral processing algorithm that is based on the search for covariance modes, providing a direct relationship between spectral information and plant constituents. The SL-AI algorithm was applied in a dataset containing 847 observations obtained with a handheld hyperspectral spectroradiometer (400 -1010 nm), structured as: three grapevine cultivars (Touriga Nacional, Touriga Franca and Tinta Barroca), collected in three years (2014, 2015 and 2017), in two test sites in the renowned Douro Wine Region, northeast of Portugal. The Psi(pd) SL-AI quantification was tested both in regressive (R-2 = 0.97, MAPE = 18.30%) and classification (three classes; overall accuracy = 86.27%) approaches, where the radiation absorption spectrum zones of the chlorophylls, xanthophyll and water were identified along the vegetative growth cycle. The dataset was also tested with Artificial Neural Networks with Principal Component Analysis (ANN-PCA) and Partial Least Square (PLS), which presented worse performance when compared to SL-AI in the regressive (ANN-PCA - R-2 = 0.85, MAPE = 43.64%; PLS - R-2 = 0.94, MAPE = 28.76%) and classification (ANN-PCA - overall accuracy: 72.37%; PLS - overall accuracy: 73.79%) approaches. The Psi(pd) modelled with SL-AI demonstrated, through hyperspectral reflectance, a cause-effect of the grapevine's hydric status with the absorbance of bands related to chlorophyll, xanthophylls and water. This cause-effect interaction could be explored to identify cultivars and cultural practices, hydric, heating and lighting stresses.
2022
Authors
Reis Pereira, M; Tosin, R; Martins, R; dos Santos, FN; Tavares, F; Cunha, M;
Publication
PLANTS-BASEL
Abstract
Pseudomonas syringae pv. actinidiae (Psa) has been responsible for numerous epidemics of bacterial canker of kiwi (BCK), resulting in high losses in kiwi production worldwide. Current diagnostic approaches for this disease usually depend on visible signs of the infection (disease symptoms) to be present. Since these symptoms frequently manifest themselves in the middle to late stages of the infection process, the effectiveness of phytosanitary measures can be compromised. Hyperspectral spectroscopy has the potential to be an effective, non-invasive, rapid, cost-effective, high-throughput approach for improving BCK diagnostics. This study aimed to investigate the potential of hyperspectral UV-VIS reflectance for in-situ, non-destructive discrimination of bacterial canker on kiwi leaves. Spectral reflectance (325-1075 nm) of twenty plants were obtained with a handheld spectroradiometer in two commercial kiwi orchards located in Portugal, for 15 weeks, totaling 504 spectral measurements. Several modeling approaches based on continuous hyperspectral data or specific wavelengths, chosen by different feature selection algorithms, were tested to discriminate BCK on leaves. Spectral separability of asymptomatic and symptomatic leaves was observed in all multi-variate and machine learning models, including the FDA, GLM, PLS, and SVM methods. The combination of a stepwise forward variable selection approach using a support vector machine algorithm with a radial kernel and class weights was selected as the final model. Its overall accuracy was 85%, with a 0.70 kappa score and 0.84 F-measure. These results were coherent with leaves classified as asymptomatic or symptomatic by visual inspection. Overall, the findings herein reported support the implementation of spectral point measurements acquired in situ for crop disease diagnosis.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.