Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by José Luís Santos

2012

Interrogation System Based on "Figure-of-Eight" Fiber Loop Mirror

Authors
Silva, RM; Layeghi, A; Zibaii, MI; Latifi, H; Santos, JL; Lobo Ribeiro, ABL; Frazao, O;

Publication
22ND INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS, PTS 1-3

Abstract
A theoretical and experimental study of a new fiber loop mirror based on a "figure-of-eight" configuration, is reported. For the theoretical model, the Jones matrix analysis is analyzed. The configuration is tested as an interrogation system where the spectral response arises from the combination of the reference signal modulated by the sensor signal. The configuration is characterized in mechanical strain and presents a phase sensitivity of 8.2 mrad/mu epsilon.

2012

A novel highly birefringent fiber loop mirror sensor based on a 3x3 coupler

Authors
Silva, RM; Lobo Ribeiro, ABL; Santos, JL; Frazao, O;

Publication
OPTICAL SENSING AND DETECTION II

Abstract
In this work, a novel high birefringent (HiBi) fiber loop mirror sensor based on a "figure-of-eight" constructed with a 3x3 fiber coupler, is presented. The "figure-of-eight" is formed by two fiber loop mirrors (FLM's) made by four of the six fiber arms of the 3x3 fiber coupler. The other two remaining fiber ports of the 3x3 coupler are used as input and output fibers of the compound sensor. The sensing head is located in the one of the FLM and it is formed by a spliced section of HiBi elliptical core fiber. The spectral response of this "figure-of-eight" configuration presents two interference optical signals that can be easily tuned by a polarization controller that is located in the other FLM, and which is made only of standard singlemode fiber from two arms of the 3x3 coupler. The sensor head was optically characterized both in temperature and strain, showing wavelength dependence sensitivities of -0.23 nm/degrees C and - 2.6 pm/mu epsilon, for temperature and strain, respectively. It is noticed that these sensitivities are practically the same for the two interference signals. Future work will explore the possibility to use the singlemode FLM to interrogate the sensor head made by HiBi fiber section, and providing elimination of phase fluctuations that can occur, increasing its potential for remote sensing applications.

2012

Multimode Interference as a Tool for Fiber Sensing

Authors
Santos, JL; Silva, S; Ferreira, LA; Araujo, FM; Frazao, O;

Publication
FIBER OPTIC SENSORS AND APPLICATIONS IX

Abstract
Fiber optic modal interferometry has been around as a sensing concept since the outcome of fiber optic sensing. Initially supported by the utilization of standard Hi-Bi fibres associated to polarimetric modal interference, later this sensing approach evolved to modal interference based on spatial modes propagating in the core, on spatial modes propagating in the core and in the cladding with coupling performed by fibre devices such as long period gratings and tapers, and more recently on several types of modes propagating in photonic crystal fibers. This paper will address fiber optic sensing based on modal interferometry, and configurations of different type researched in last years will be presented and their performance compared.

2011

Optical refractometer based on multimode interference in a pure silica tube

Authors
Coelho, L; Kobelke, J; Schuster, K; Santos, JL; Frazao, O;

Publication
OPTICAL ENGINEERING

Abstract
A multimode interferometer based-fiber optic sensor with a silica tube section aimed to measure refractive index (RI) variations of surrounding liquids is presented. The sensing head is a silica tube section fusion spliced to single mode fibers operating in transmission. In the splice regions tapers were made to allow the light to be guided in the silica tube while the core is formed by air. This configuration permits measurements of refractive index variations with sensitivities of 101.1, 106.29, and 107.97 nm/RIU considering resonances with different wavelengths. The same resonances were tested with temperature variations with sensitivities achieved of 7.8, 8.7, and 9.3 pm/ degrees C, respectively. The spectral variation associated with one degree temperature change corresponds to a refractive index change of similar to 8 x 10(-5), proving the low temperature dependence compared with sensitivity to RI variations. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3646393]

2011

Simultaneous measurement of three parameters using an all-fiber Mach-Zehnder interferometer based on suspended twin-core fibers

Authors
Oliveira Silva, SFO; Santos, JL; Kobelke, J; Schuster, K; Frazao, O;

Publication
OPTICAL ENGINEERING

Abstract
We describe an all-fiber Mach-Zehnder interferometric configuration based on a suspended twin-core fiber. Because of the birefringence of the fiber cores, two interferometers are obtained by illuminating the fiber with polarized light. Applying strain, curvature, and temperature to the sensing head, different sensitivities are observed that permit the use of the matrix method to discriminate these three measurands. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3553482]

2000

Simultaneous measurement of strain and temperature using interferometrically interrogated fiber Bragg grating sensors

Authors
Ferreira, LA; Araujo, FM; Santos, JL; Farahi, F;

Publication
OPTICAL ENGINEERING

Abstract
The potential of different fiber Bragg grating pairs for simultaneous sensing of strain and temperature is analyzed. We demonstrate that interferometric interrogation of a fiber grating written in bow-tie fiber enables strain and temperature to be simultaneously determined. This is achieved by independent measurement of the shift in the wavelengths of the reflected light from the grating components along the fast and the slow axes of the hi-bi fiber. A detailed theoretical analysis is presented that includes the basic sensing principle, sensor design and demodulation scheme. The performance of the proposed technique in simultaneous measurement of temperature and strain is experimentally demonstrated and resolutions of +/-2.5 degrees C/root Hz and +/-26 mu epsilon/root Hz are obtained for a fiber with birefringence of B = 5.5 x 10(-4). (C) 2000 Society of Photo-Optical Instrumentation Engineers. [S0091-3286(00)00808-4].

  • 51
  • 80