2018
Authors
Brito, T; Lima, J; Costa, P; Piardi, L;
Publication
Advances in Intelligent Systems and Computing
Abstract
The new paradigms of Industry 4.0 demand the collaboration between robot and humans. They could help and collaborate each other without any additional safety unlike other manipulators. The robot should have the ability of acquire the environment and plan (or re-plan) on-the-fly the movement avoiding the obstacles and people. This paper proposes a system that acquires the environment space, based on a kinect sensor, performs the path planning of a UR5 manipulator for pick and place tasks while avoiding the objects, based on the point cloud from kinect. Results allow to validate the proposed system. © Springer International Publishing AG 2018.
2018
Authors
Piardi, L; Lima, J; Costa, P; Brito, T;
Publication
Advances in Intelligent Systems and Computing
Abstract
Some industries have critical areas (dangerous or hazardous) where the presence of a human must be reduced or avoided. In some cases, there are areas where humans should be replaced by robots. The present work uses a robot with differential drive to scan an environment with known and unknown obstacles, defined in 3D simulation. It is important that the robot be able to make the right decisions about its way without the need of an operator. A solution to this challenge will be presented in this paper. The control application and its communication module with a simulator or a real robot are proposed. The robot can perform the scan, passing through all the waypoints arranged in a grid. The results are presented, showcasing the robot’s capacity to perform a viable trajectory without human intervention. © Springer International Publishing AG 2018.
2019
Authors
Lima, J; Costa, P; Brito, T; Piardi, L;
Publication
2019 19TH IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2019)
Abstract
Mobile robotic applications are increasing in several areas not only in industries but also service robots. The Industry 4.0 promoted even more the digitalization of factories that opened space for smart-factories implementation. Robotic competitions are a key to improve research and to motivate learning. This paper addresses a new competition proposal, the Robot@Factory Lite, in the scope of the Portuguese Robotics Open. Beyond the competition, a reference robot with all its components is proposed and a simulation environment is also provided. To minimize the gap between the simulation and the real implementation, an Hardware-in-the-loop technique is proposed that allows to control the simulation with a real Arduino board. Results show the same code, and hardware, can control both simulation model and real robot.
2020
Authors
Brito, T; Pereira, AI; Lima, J; Castro, JP; Valente, A;
Publication
PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON OPERATIONS RESEARCH AND ENTERPRISE SYSTEMS (ICORES)
Abstract
Forests have been harassed by fire in recent years. Whether by human action or for other reasons, the burned area has increased harming fauna and flora. It is fundamental to detect an ignition early in order to firefighters fight the fire minimizing the fire impacts. The proposed Forest Monitoring System aims to improve the nature monitoring and to enhance the existing surveillance systems. A set of innovative operations is proposed that will allow to identify a forest ignition and also will monitor the fauna. For that, a set of sensors are being developed and placed in the forest to transmit data and identify forest fire ignition. This paper addresses a methodology that identifies the optimal positions to place the developed sensors in order to minimize the fire hazard. Some preliminary results are shown by a stochastic algorithm that spread points to position the sensor modules in areas with a high risk of fire hazard.
2020
Authors
Brito, T; Pereira, AI; Lima, J; Valente, A;
Publication
ELECTRONICS
Abstract
Wireless Sensor Networks (WSN) can be used to acquire environmental variables useful for decision-making, such as agriculture and forestry. Installing a WSN on the forest will allow the acquisition of ecological variables of high importance on risk analysis and fire detection. The presented paper addresses two types of WSN developed modules that can be used on the forest to detect fire ignitions using LoRaWAN to establish the communication between the nodes and a central system. The collaboration between these modules generate a heterogeneous WSN; for this reason, both are designed to complement each other. The first module, the HTW, has sensors that acquire data on a wide scale in the target region, such as air temperature and humidity, solar radiation, barometric pressure, among others (can be expanded). The second, the 5FTH, has a set of sensors with point data acquisition, such as flame ignition, humidity, and temperature. To test HTW and 5FTH, a LoRaWAN communication based on the Lorix One gateway is used, demonstrating the acquisition and transmission of forest data (simulation and real cases). Even in internal or external environments, these results allow validating the developed modules. Therefore, they can assist authorities in fighting wildfire and forest surveillance systems in decision-making.
2020
Authors
Lima, J; Oliveira, V; Brito, T; Goncalves, J; Pinto, VH; Costan, P; Torrico, C;
Publication
2020 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2020)
Abstract
The Robot@Factory Lite (R@FL) is a competition held at the Portuguese Robotics Open that aims to present a problem inspired by the deployment of autonomous mobile robots on a factory shop floor. This paper proposes an approach to transform this competition according to the Industry 4.0 concept using the Wi-Fi to attribute orders to the mobile robot. The main contribution of this paper is to address a Supply Chain Management (SPM) of the ERP (Enterprise Resource Planning) that will inform the tasks to the robot so that it can schedule. It is presented a new hardware architecture that should be able to read the information of the parts through Wi-Fi in a client-server methodology. It also includes encoders that allow to feedback the wheels rotation and can be used to estimate the odometry.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.