2023
Authors
Piqueiro, H; Gomes, R; Santos, R; de Sousa, JP;
Publication
SUSTAINABILITY
Abstract
To design and deploy their supply chains, companies must naturally take quite different decisions, some being strategic or tactical, and others of an operational nature. This work resulted in a decision support system for optimising a biomass supply chain in Portugal, allowing a more efficient operations management, and enhancing the design process. Uncertainty and variability in the biomass supply chain is a critical issue that needs to be considered in the production planning of bioenergy plants. A simulation/optimisation framework was developed to support decision-making, by combining plans generated by a resource allocation optimisation model with the simulation of disruptive wildfire scenarios in the forest biomass supply chain. Different scenarios have been generated to address uncertainty and variability in the quantity and quality of raw materials in the different supply nodes. Computational results show that this simulation/optimisation approach can have a significant impact in the operations efficiency, particularly when disruptions occur closer to the end of the planning horizon. The approach seems to be easily scalable and easy to extend to other sectors.
2022
Authors
Piqueiro, H; de Sousa, JP; Santos, R; Gomes, R;
Publication
Proceedings of the International Conference on Industrial Engineering and Operations Management
Abstract
2024
Authors
Santos, R; Piqueiro, H; Dias, R; Rocha, CD;
Publication
COMPUTERS & INDUSTRIAL ENGINEERING
Abstract
In the dynamic realm of nowadays manufacturing, integrating digital technologies has become paramount for enhancing operational efficiency and decision-making processes. This article presents a novel system architecture that integrates a Simulation-based Digital Twin (DT) with emerging trends in manufacturing to enhance decision-making, accompanied by a detailed technical approach encompassing protocols and technologies for each component. The DT leverages advanced simulation techniques to model, monitor, and optimize production processes in real time, facilitating both strategic and operational decision-making. Complementing the DT, trending technologies such as artificial intelligence, additive manufacturing, collaborative robots, autonomous vehicles, and connectivity advancements are strategically integrated to enhance operational efficiency and facilitate the adoption of the Manufacturing as a Service (MaaS) paradigm. A case study within a MaaS supplier context, deployed in an industrial laboratory with advanced robotic systems, demonstrates the practical application of optimizing dynamic job-shop configurations using Simulation-based DT, showcasing strategies to improve operational efficiency and resource utilization. The results of the industrial experiment were highly encouraging, underscoring the potential for extension to more intricate industrial systems, with particular emphasis on incorporating sustainability and remanufacturing principles.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.