2013
Authors
Guedes, N; Pinto, T; Vale, Z; Sousa, TM; Sousa, T;
Publication
2013 24TH INTERNATIONAL WORKSHOP ON DATABASE AND EXPERT SYSTEMS APPLICATIONS (DEXA 2013)
Abstract
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors' research group has developed a multi-agent system: MASCEM (Multi-Agent System for Competitive Electricity Markets), which simulates the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. However, it is still necessary to adequately optimize the player's portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering the different markets the player is acting on in each moment, and depending on different contexts of negotiation, such as the peak and off-peak periods of the day, and the type of day (business day, weekend, holiday, etc.). The proposed approach is tested and validated using real electricity markets data from the Iberian operator - OMIE.
2013
Authors
Pinto, T; Praca, I; Santos, G; Vale, Z;
Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
Electricity markets are complex environments with very particular characteristics. A critical issue concerns the constant changes they are subject to. This is a result of the electricity markets' restructuring, performed so that the competitiveness could be increased, but with exponential implications in the increase of the complexity and unpredictability in those markets' scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behavior. The need for understanding the market mechanisms and how the involved players' interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This paper presents the Multi-Agent System for Competitive Electricity Markets (MASCEM) - a simulator based on multi-agent technology that provides a realistic platform to simulate electricity markets, the numerous negotiation opportunities and the participating entities. © 2013 Springer-Verlag Berlin Heidelberg.
2013
Authors
Barreto, J; Praca, I; Pinto, T; Sousa, TM; Vale, Z;
Publication
PROCEEDINGS OF THE 2013 IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (EAIS)
Abstract
Electricity markets are complex environments comprising several negotiation mechanisms. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. ALBidS (Adaptive Learning Strategic Bidding System) is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This paper aims to complement ALBidS strategies usage by MASCEM players, providing, through the Six Thinking hats group decision technique, a means to combine them and take advantages from their different perspectives. The combination of the different proposals resulting from ALBidS' strategies is performed through the application of a Genetic Algorithm, resulting in an evolutionary learning approach.
2019
Authors
Jozi, A; Pinto, T; Marreiros, G; Vale, Z;
Publication
2019 IEEE Milan PowerTech, PowerTech 2019
Abstract
The rising needs for increased energy efficiency and better use of renewable energy sources bring out the necessity for improved energy management and forecasting models. Electricity consumption, in particular, is subject to large variations due to the effect of multiple variables, such as the temperature, luminosity or humidity, and of course, consumers' habits. Current forecasting models are not able to deal adequately with the influence and correlation between the multiple involved variables. Hence, novel, adaptive forecasting models are needed. This paper presents a novel approach based on multiple artificial intelligence-based forecasting algorithms. The considered algorithms are artificial neural networks, support vector machines hybrid fuzzy inference systems, Wang and Mendel's fuzzy rule learning method and a genetic fuzzy system for fuzzy rule learning based on the MOGUL methodology. These algorithms are used to forecast the electricity consumption of a real office building, using multiple input variables and consumption disaggregation. © 2019 IEEE.
2019
Authors
Nascimento, J; Pinto, T; Vale, Z;
Publication
2019 IEEE Milan PowerTech, PowerTech 2019
Abstract
Electricity markets are complex environments with very dynamic characteristics. The large-scale penetration of renewable energy sources has brought an increased uncertainty to generation, which is consequently, reflected in electricity market prices. In this way, novel advanced forecasting methods that are able to predict electricity market prices taking into account the new variables that influence prices variation are required. This paper proposes a new model for day-ahead electricity market prices forecasting based on the application of an artificial neural network. The main novelty of this paper relates to the pre-processing phase, in which the relevant data referring to the different variables that have a direct influence on market prices such as generation, temperature, consumption, among others, is analysed. The association between these variables is performed using spearman correlation, from which results the identification of which data has a larger influence on the market prices variation. This pre-analysis is then used to adapt the training process of the artificial neural network, leading to improved forecasting results, by using the most relevant data in an appropriate way. © 2019 IEEE.
2013
Authors
Santos, G; Praca, I; Pinto, T; Ramos, S; Vale, Z;
Publication
2013 IEEE SYMPOSIUM ON INTELLIGENT AGENT (IA)
Abstract
This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players' profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets' participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents' profiles and strategies resulting in a better representation of real market players' behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.