2023
Authors
Santos, G; Pinto, T; Ramos, C; Corchado, JM;
Publication
FRONTIERS IN ENERGY RESEARCH
Abstract
[No abstract available]
2023
Authors
Teixeira, B; Carvalhais, L; Pinto, T; Vale, Z;
Publication
2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI
Abstract
The structural changes in the energy sector caused by renewable sources and digitization have resulted in an increased use of Artificial Intelligence (AI), including Machine Learning (ML) models. However, these models' black-box nature and complexity can create issues with transparency and trust, thereby hindering their interpretability. The use of Explainable AI (XAI) can offer a solution to these challenges. This paper explores the application of an XAI-based framework to analyze and evaluate a photovoltaic energy generation forecasting problem and contribute to the trustworthiness of ML solutions.
2023
Authors
Santos, G; Teixeira, B; Pinto, T; Vale, Z;
Publication
2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI
Abstract
Automatic energy management systems allow users' active participation in flexibility management while assuring their energy demands. We propose a transparent framework for automated energy management to increase trust and improve the learning process, combining machine learning, experts' knowledge, and semantic reasoning. A practical example of thermal comfort shows the advantages of the framework.
2023
Authors
Pereira, R; Lima, C; Pinto, T; Reis, A;
Publication
ELECTRONICS
Abstract
Information and Communication Technologies are driving the improvement of industrial processes. According to the Industry 4.0 (I4.0) paradigm, digital systems provide real-time information to humans and machines, increasing flexibility and efficiency in production environments. Based on the I4.0 Design Principles concept, Virtual Assistants can play a vital role in processing production data and offer contextualized and real-time information to the workers in the production environment. This systematic review paper explored Virtual Assistant applications in the context of I4.0, discussing the Technical Assistance Design Principle and identifying the characteristics, services, and limitations regarding Virtual Assistant use in the production environments. The results showed that Virtual Assistants offer Physical and Virtual Assistance. Virtual Assistance provides real-time contextualized information mainly for support, while Physical Assistance is oriented toward task execution. Regarding services, the applications include integration with legacy systems and static information treatment. The limitations of the applications incorporate concerns about information security and adapting to noisy and unstable environments. It is possible to assume that the terminology of Virtual Assistants is not standardized and is mentioned as chatbots, robots, and others. Besides the worthy insights of this research, the small number of resulting papers did not allow for generalizations. Future research should focus on broadening the search scope to provide more-significant conclusions and research possibilities with new AI models and services, including the emergent Industry 5.0 concept.
2023
Authors
Pereira, R; Lima, C; Reis, A; Pinto, T; Barroso, J;
Publication
Information Systems and Technologies - WorldCIST 2023, Volume 3, Pisa, Italy, April 4-6, 2023.
Abstract
Virtual assistants offer a new type of solution to handle interaction between human and machine and can be applied in various business contexts such as Industry or Education. When designing and building a virtual assistant the developers must ensure a set of parameters to achieve a good solution. Various platforms and frameworks emerged to allow developers to create virtual assistant solutions easier and faster. This paper provides a review of available platforms and frameworks used by authors to create their own solutions in different areas. Big tech companies like Google with Dialogflow, IBM with Watson Assistant and Microsoft with Bot Framework, present mature solutions to build virtual assistants that provide to the developer all components of the basic architecture to build a fast and solid solution. Open-Source solutions focus on providing to the developer the main components to build a virtual assistant, namely language understanding and response generation. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
2023
Authors
Santos, G; Morais, H; Pinto, T; Corchado, JM; Vale, Z;
Publication
ENERGY CONVERSION AND MANAGEMENT-X
Abstract
The significant changes the electricity sector has been suffering in the latest decades increased the complexity and unpredictability of power and energy systems (PES). To deal with such a volatile environment, different software tools are available to simulate, study, test, and support the decisions of the various entities involved in the sector. However, being developed for specific subdomains of PES, these tools lack interoperability with each other, hindering the possibility to achieve more complex and complete simulations, management, operation and decision support scenarios. This paper presents the Intelligent Energy Systems Ontology (IESO), which provides semantic interoperability within a society of multi-agent systems (MAS) in the frame of PES. It leverages the knowledge from existing and publicly available semantic models developed for specific domains to accomplish a shared vocabulary among the agents of the MAS society, overcoming the existing heterogeneity among the reused ontologies. Moreover, IESO provides agents with semantic reasoning, constraints validation, and data uniformization. The use of IESO is demonstrated through a case study that simulates the management of a distribution grid, considering the validation of the network's technical constraints. The results demonstrate the applicability of IESO for semantic interoperability, reasoning through constraints validation, and automatic units' conversion. IESO is publicly available and accomplishes the pre-established requirements for ontology sharing.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.