Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Tiago Manuel Campelos

2024

Identification of Consumption Patterns in Household Appliances using Data Association Model

Authors
Carneiro, L; Pinto, T; Baptista, J;

Publication
2024 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM 2024

Abstract
Currently, energy consumption in residential buildings is increasingly high. To meet demand, renewable energies are increasingly being used to produce more energy in a sustainable way, which has led to an increase in the load on the distribution network. Thus, with the exponential growth of dependence on technologies, studies on consumption patterns are increasingly common in order to try to understand the needs of the population and, in this way, make a more rational and efficient use of energy. This article aims to find consumption patterns in residential devices, considering specific houses. This work proposes the use of the Apriori algorithm, which allows the creation of several association rules among devices. The results, considering several scenarios in a house with 9 appliances, show that, despite the Apriori algorithm's difficulty in finding associations in household appliances with little time of use, several interesting association rules can be identified, providing relevant insights for future consumption flexibility models applications.

2024

Exploring Clustering to Improve Interpretability in Complex Energy Forecasting Models

Authors
Teixeira, B; Valina, L; Pinto, T; Reis, A; Barroso, J; Vales, Z;

Publication
2024 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES, SEST 2024

Abstract
Explainable Artificial Intelligence (XAI) aims to enhance the interpretability of Artificial Intelligence (AI) systems for humans. The goal is to ensure that algorithmic decisions and underlying data are understandable to non-technical stakeholders. Advanced Machine Learning (ML) models, such as deep neural networks, enable AI systems to process vast data and extract intricate patterns, akin to the human brain, but this complicates XAI development. Complex ML models require substantial data for training, exacerbating the challenge. Consequently, this paper proposes a novel approach to improve XAI for complex ML models, particularly those with large data needs. Using K-Means clustering, the paper proposes to identify relevant data instances to create similarity clusters. This filtering process focuses XAI on essential information, even with complex models, reducing the data set to find patterns and explanations, so that, using the same approach, only the best explanations are filtered efficiently. The paper proposes to implement and test this model with a case study on ML for PV generation forecasting in buildings. Results show that the proposed approach is able to generate explanations that are very similar to those generated when using the entire available data, in only a portion of the execution time, leveraging from the identification of a small number of representative data points. This approach, therefore, enhances the efficiency of XAI by achieving promising results with a smaller dataset. It also facilitates the development of more understandable and fastly provided solutions, which is essential for real-world XAI users such as electric mobility users that need PV forecasting explanations as support for their vehicles charging management.

2024

Specialized tabu search algorithm applied to the reconfiguration of radial distribution systems

Authors
Yamamoto, RY; Pinto, T; Romero, R; Macedo, LH;

Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
This work presents a specialized tabu search algorithm applied to the problem of electric power distribution systems primary feeders' reconfiguration. The specialization is related to two fundamental aspects of the tabu search algorithm. The first proposal eliminates the concept of a list of prohibited attributes and the aspiration criterion, but also avoids the possibility of revisiting a candidate solution so that cycling is avoided by maintaining a tabu list with all previously visited solutions. The second proposal is the possibility of restarting the search from the incumbent solution while avoiding paths that can be formed by revisiting candidate solutions. A new strategy based on Prim's algorithm generates a high-quality initial solution for the problem. Tests are conducted using the 33-, 84-, 118-, 136-, and 415-node test systems. The results demonstrate the effectiveness of the proposal for solving the reconfiguration problem since the best-known solution for each system is achieved within highly efficient execution times.

2024

Explainable Artificial Intelligence for Deep Synthetic Data Generation Models

Authors
Valina, L; Teixeira, B; Reis, A; Vale, Z; Pinto, T;

Publication
2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024

Abstract
Artificial intelligence encapsulates a black box of undiscovered knowledge, propelling the exploration of Explainable Artificial Intelligence (XAI) in generative data synthesis and deep learning. Focused on unveiling these black box areas, pointed into interpretability and validation in synthetic data generation, shedding light on the intricacies of generative processes. XAI techniques illuminate decision-making in complex algorithms, enhancing transparency and fostering a comprehensive understanding of non-linear relationships. Addressing the complexity of explaining deep learning models, this paper proposes an XAI solution for deep synthetic data generation explanation. The model integrates a clustering approach to identify similar training instances, reducing interpretation time for large datasets. Explanations, available in various formats, are tailored to diverse user profiles through integration with language models, generating texts with different technical detail levels. This research contributes to ethically deploying AI, bridging the gap between advanced model complexities and human interpretability in the dynamic landscape of artificial intelligence.

2024

Optimal operational planning of distribution systems: A neighborhood search-based matheuristic approach

Authors
Yumbla, J; Home Ortiz, J; Pinto, T; Catalao, JPS; Mantovani, JRS;

Publication
SUSTAINABLE ENERGY GRIDS & NETWORKS

Abstract
This study proposes a strategy for short-term operational planning of active distribution systems to minimize operating costs and greenhouse gas (GHG) emissions. The strategy incorporates network reconfiguration, switchable capacitor bank operation, dispatch of fossil fuel-based and renewable distributed energy resources, energy storage devices, and a demand response program. Uncertain operational conditions, such as energy costs, power demand, and solar irradiation, are addressed using stochastic scenarios derived from historical data through a k-means technique. The mathematical formulation adopts a stochastic scenario-based mixed-integer second-order conic programming (MISOCP) model. To handle the computational complexity of the model, a neighborhood-based matheuristic approach (NMA) is introduced, employing reduced MISOCP models and a memory strategy to guide the optimization process. Results from 69 and 118-node distribution systems demonstrate reduced operational costs and GHG emissions. Moreover, the proposed NMA outperforms two commercial solvers. This work provides insights into optimizing the operation of distribution systems, yielding economic and environmental benefits.

2025

Modeling Electricity Markets and Energy Systems: Challenges and Opportunities

Authors
Aliabadi, DE; Pinto, T;

Publication
ENERGIES

Abstract
[No abstract available]

  • 60
  • 61