2024
Authors
Yamamoto, RY; Pinto, T; Romero, R; Macedo, LH;
Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
Abstract
This work presents a specialized tabu search algorithm applied to the problem of electric power distribution systems primary feeders' reconfiguration. The specialization is related to two fundamental aspects of the tabu search algorithm. The first proposal eliminates the concept of a list of prohibited attributes and the aspiration criterion, but also avoids the possibility of revisiting a candidate solution so that cycling is avoided by maintaining a tabu list with all previously visited solutions. The second proposal is the possibility of restarting the search from the incumbent solution while avoiding paths that can be formed by revisiting candidate solutions. A new strategy based on Prim's algorithm generates a high-quality initial solution for the problem. Tests are conducted using the 33-, 84-, 118-, 136-, and 415-node test systems. The results demonstrate the effectiveness of the proposal for solving the reconfiguration problem since the best-known solution for each system is achieved within highly efficient execution times.
2024
Authors
Valina, L; Teixeira, B; Reis, A; Vale, Z; Pinto, T;
Publication
2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024
Abstract
Artificial intelligence encapsulates a black box of undiscovered knowledge, propelling the exploration of Explainable Artificial Intelligence (XAI) in generative data synthesis and deep learning. Focused on unveiling these black box areas, pointed into interpretability and validation in synthetic data generation, shedding light on the intricacies of generative processes. XAI techniques illuminate decision-making in complex algorithms, enhancing transparency and fostering a comprehensive understanding of non-linear relationships. Addressing the complexity of explaining deep learning models, this paper proposes an XAI solution for deep synthetic data generation explanation. The model integrates a clustering approach to identify similar training instances, reducing interpretation time for large datasets. Explanations, available in various formats, are tailored to diverse user profiles through integration with language models, generating texts with different technical detail levels. This research contributes to ethically deploying AI, bridging the gap between advanced model complexities and human interpretability in the dynamic landscape of artificial intelligence.
2024
Authors
Yumbla, J; Home Ortiz, J; Pinto, T; Catalao, JPS; Mantovani, JRS;
Publication
SUSTAINABLE ENERGY GRIDS & NETWORKS
Abstract
This study proposes a strategy for short-term operational planning of active distribution systems to minimize operating costs and greenhouse gas (GHG) emissions. The strategy incorporates network reconfiguration, switchable capacitor bank operation, dispatch of fossil fuel-based and renewable distributed energy resources, energy storage devices, and a demand response program. Uncertain operational conditions, such as energy costs, power demand, and solar irradiation, are addressed using stochastic scenarios derived from historical data through a k-means technique. The mathematical formulation adopts a stochastic scenario-based mixed-integer second-order conic programming (MISOCP) model. To handle the computational complexity of the model, a neighborhood-based matheuristic approach (NMA) is introduced, employing reduced MISOCP models and a memory strategy to guide the optimization process. Results from 69 and 118-node distribution systems demonstrate reduced operational costs and GHG emissions. Moreover, the proposed NMA outperforms two commercial solvers. This work provides insights into optimizing the operation of distribution systems, yielding economic and environmental benefits.
2025
Authors
Aliabadi, DE; Pinto, T;
Publication
ENERGIES
Abstract
[No abstract available]
2018
Authors
Pinto, A; Pinto, T; Praca, I; Vale, Z; Faria, P;
Publication
2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM)
Abstract
Electricity markets are complex and dynamic environments, mostly due to the large scale integration of renewable energy sources in the system. Negotiation in these markets is a significant challenge, especially when considering negotiations at the local level (e.g. between buildings and distributed energy resources). It is essential for a negotiator to he able to identify the negotiation profile of the players with whom he is negotiating. If a negotiator knows these profiles, it is possible to adapt the negotiation strategy and get better results in a negotiation. In order to identify and define such negotiation profiles, a clustering process is proposed in this paper. The clustering process is performed using the kml-k-means algorithm, in which several negotiation approaches are evaluated in order to identify and define players' negotiation profiles. A case study is presented, using as input data, information from proposals made during a set of negotiations. Results show that the proposed approach is able to identify players' negotiation profiles used in bilateral negotiations in electricity markets.
2016
Authors
Faia, R; Pinto, T; Vale, Z;
Publication
PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI)
Abstract
This paper presents a methodology based on genetic Algorithms (GA) to solve the problem of optimal participation in multiple electricity markets. With the emergence of new requirements for electrical power markets, it has become fundamental to develop tools to aid in decision making, understanding the functioning of markets and forecast iterations that occur between the different entities in the market. Artificial intelligence plays a crucial role in the development of these tools. Using artificial intelligence techniques, it is possible to simulate the different existing players in the market, to enable these players to be adaptive to any situation, and to model any type of trading. Artificial intelligence based metaheuristic optimization tools allow solving problems in a short time, and with very close results to those that deterministic techniques are able to achieve, at the cost of a high execution time. The achieved results, using a simulation scenario based on real data from the Iberian electricity market, show that the proposed method is able to reach better results than previous implementations of a Particle Swarm Optimization (PSO) and a Simulated Annealing (SA) methods, while achieving very similar objective function results to those of a deterministic approach, in a much faster execution time.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.