2022
Authors
Teixeira, J; Rocha, V; Oliveira, J; Jorge, PAS; Silva, NA;
Publication
Journal of Physics: Conference Series
Abstract
Optical trapping provides a way to isolate, manipulate, and probe a wide range of microscopic particles. Moreover, as particle dynamics are strongly affected by their shape and composition, optical tweezers can also be used to identify and classify particles, paving the way for multiple applications such as intelligent microfluidic devices for personalized medicine purposes, or integrated sensing for bioengineering. In this work, we explore the possibility of using properties of the forward scattered radiation of the optical trapping beam to analyze properties of the trapped specimen and deploy an autonomous classification algorithm. For this purpose, we process the signal in the Fourier domain and apply a dimensionality reduction technique using UMAP algorithms, before using the reduced number of features to feed standard machine learning algorithms such as K-nearest neighbors or random forests. Using a stratified 5-fold cross-validation procedure, our results show that the implemented classification strategy allows the identification of particle material with accuracies up to 80%, demonstrating the potential of using signal processing techniques to probe properties of optical trapped particles based on the forward scattered light. Furthermore, preliminary results of an autonomous implementation in a standard experimental optical tweezers setup show similar differentiation capabilities for real-time applications, thus opening some opportunities towards technological applications such as intelligent microfluidic devices and solutions for biochemical and biophysical sensing. © Published under licence by IOP Publishing Ltd.
2022
Authors
Coutinho, F; Teixeira, J; Rocha, V; Oliveira, J; Jorge, PAS; Silva, NA;
Publication
Journal of Physics: Conference Series
Abstract
Optical trapping is a versatile and non-invasive technique for single particle manipulation. As such, it can be widely applied in the domains of particle identification and classification and thus used as a tool for monitoring physical and chemical processes. This creates an opportunity for integrating the method seamlessly into optofluidic chips, provided it can be automatized. Yet even though OT is well established in multiple scientific domains, a full stack approach to its integration into other technological devices is still lacking. This calls for solutions in tasks such as automatic trapping and signal analysis. In this manuscript, we describe the implementation of an algorithm seeking autonomous particle location and trapping. The methodology is based upon image-processing, allowing for particle location using real time image segmentation. A local thresholding algorithm is applied, followed by morphological techniques for closing shapes and excluding non-bounded regions - after which only the particles remain on the image. Once the centroid is identified, the stage is translated accordingly by piezo-electric actuators, followed by the laser activation. In this way, trapping is achieved, and one may proceed to analyze the forward scattered optical signal, after which a new particle inside the actuators range may be automatically trapped. This development, when compared with existent solutions involving holographic optical tweezers, allows for similar capabilities without using a spatial light modulator, thus dramatically reducing the setup costs of autonomous OT solutions. Therefore, when combined with particle classification techniques, this method is well suited for integration into possible optofluidic chips for autonomous sensing and monitoring of biochemical samples. © Published under licence by IOP Publishing Ltd.
2024
Authors
Teixeira, J; Moreira, FC; Oliveira, J; Rocha, V; Jorge, PAS; Ferreira, T; Silva, NA;
Publication
MEASUREMENT SCIENCE AND TECHNOLOGY
Abstract
Optical tweezers are an interesting tool to enable single cell analysis, especially when coupled with optical sensing and advanced computational methods. Nevertheless, such approaches are still hindered by system operation variability, and reduced amount of data, resulting in performance degradation when addressing new data sets. In this manuscript, we describe the deployment of an automatic and intelligent optical tweezers setup, capable of trapping, manipulating, and analyzing the physical properties of individual microscopic particles in an automatic and autonomous manner, at a rate of 4 particle per min, without user intervention. Reproducibility of particle identification with the help of machine learning algorithms is tested both for manual and automatic operation. The forward scattered signal of the trapped PMMA and PS particles was acquired over two days and used to train and test models based on the random forest classifier. With manual operation the system could initially distinguish between PMMA and PS with 90% accuracy. However, when using test datasets acquired on a different day it suffered a loss of accuracy around 24%. On the other hand, the automatic system could classify four types of particles with 79% accuracy maintaining performance (around 1% variation) even when tested with different datasets. Overall, the automated system shows an increased reproducibility and stability of the acquired signals allowing for the confirmation of the proportionality relationship expected between the particle size and its friction coefficient. These results demonstrate that this approach may support the development of future systems with increased throughput and reliability, for biosciences applications.
2024
Authors
Teixeira, J; Ribeiro, A; Jorge, AS; Silva, A;
Publication
Proceedings of SPIE - The International Society for Optical Engineering
Abstract
Recent advances in optical trapping have opened new opportunities for manipulating micro and nanoparticles, establishing optical tweezers (OT) as a powerful tool for single-cell analysis. Furthermore, intelligent systems have been developed to characterize these particles, as information about their size and composition can be extracted from the scattered radiation signal. In this manuscript, we aim to explore the potential of optical tweezers for the characterization of sub-micron size variations in microparticles. We devised a case study, aiming to assess the limits of the size discrimination ability of an optical tweezer system, using transparent 4.8 µm PMMA particles, functionalized with streptavidin. We focused on the heavily studied streptavidin-biotin system, with streptavidin-functionalized PMMA particles targeting biotinylated bovine serum albumin. This binding process results in an added molecular layer to the particle’s surface, increasing its radius by approximately 7 nm. An automatic OT system was used to trap the particles and acquire their forward-scattered signals. Then, the signals’ frequency components were analyzed using the power spectral density method followed by a dimensionality reduction via the Uniform Manifold Approximation and Projection algorithm. Finally, a Random Forest Classifier achieved a mean accuracy of 94% for the distinction of particles with or without the added molecular layer. Our findings demonstrate the ability of our technique to discriminate between particles that are or are not bound to the biotin protein, by detecting nanoscale changes in the size of the microparticles. This indicates the possibility of coupling shape-changing bioaffinity tools (such as APTMERS, Molecular Imprinted Polymers, or antibodies) with optical trapping systems to enable optical tweezers with analytical capability. © 2024 SPIE.
2024
Authors
Lopes, T; Capela, D; Ferreira, MFS; Teixeira, J; Silva, C; Guimaraes, DF; Jorge, PAS; Silva, NA;
Publication
OPTICAL SENSING AND DETECTION VIII
Abstract
Spectral imaging is a powerful technology that uses spatially referenced spectral signatures to create informative visual maps of sample surfaces that can reveal more than what conventional RGB-visual images can show. Indeed, different spectroscopy modalities can provide different information about the same sample: for instance, Laser-Induced Breakdown Spectroscopy (LIBS) imaging can detect the presence of specific elements on the surface, while Raman imaging can identify the molecular structures and compositions of the sample, both of which have potential applications in various industrial processes, from quality control to material sorting. In the path from science to technology, the increasing accessibility to such solutions and the strong market pull have opened a window of opportunity for innovative multimodal imaging solutions, where information from distinct sources is set to be combined in order to enhance the capabilities of the single modality system. However, the practical implementation of multimodal spectral imaging is still a challenge, despite its theoretical potential, and as such, it is yet to be achieved. In this work, we will go over multimodal spectral knowledge distillation, a disruptive approach to multimodal spectral imaging techniques that tries to explore the combination of two techniques to capitalize on their individual strengths. In specific, this approach allows us to utilize one technique as an autonomous supervisor for the other, leveraging the higher degree of knowledge and interpretability of one of the techniques to increase the performance and transparency of the other. We present some example scenarios with LIBS and HSI and Raman spectroscopy and LIBS, discussing the impact of this new approach for scientific and technological applications.
2024
Authors
Guimaraes, D; Monteiro, C; Teixeira, J; Lopes, T; Capela, D; Dias, F; Lima, A; Jorge, PAS; Silva, NA;
Publication
HELIYON
Abstract
As lithium-bearing minerals become critical raw materials for the field of energy storage and advanced technologies, the development of tools to accurately identify and differentiate these minerals is becoming essential for efficient resource exploration, mining, and processing. Conventional methods for identifying ore minerals often depend on the subjective observation skills of experts, which can lead to errors, or on expensive and time-consuming techniques such as Inductively Coupled Plasma Mass Spectrometry (ICP-MS) or Optical Emission Spectroscopy (ICPOES). More recently, Raman Spectroscopy (RS) has emerged as a powerful tool for characterizing and identifying minerals due to its ability to provide detailed molecular information. This technique excels in scenarios where minerals have similar elemental content, such as petalite and spodumene, by offering distinct vibrational information that allows for clear differentiation between such minerals. Considering this case study and its particular relevance to the lithium- mining industry, this manuscript reports the development of an unsupervised methodology for lithium-mineral identification based on Raman Imaging. The deployed machine-learning solution provides accurate and interpretable results using the specific bands expected for each mineral. Furthermore, its robustness is tested with additional blind samples, providing insights into the unique spectral signatures and analytical features that enable reliable mineral identification.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.