Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Marcos Martins

2024

Dbd Plasma-Treated Polyester Fabric Coated with Doped Pedot:Pss for Thermoregulation

Authors
Magalhães, C; Ribeiro, AI; Rodrigues, R; Meireles, Â; Alves, A; Rocha, J; de Lima, FP; Martins, M; Mitu, B; Satulu, V; Dinescu, G; Padrão, J; Zille, A;

Publication

Abstract

2025

Enhancing Sea Wave Monitoring Through Integrated Pressure Sensors in Smart Marine Cables

Authors
Matos, T; Rocha, JL; Martins, MS; Gonçalves, LM;

Publication
Journal of Marine Science and Engineering

Abstract
The need for real-time and scalable oceanographic monitoring has become crucial for coastal management, marine traffic control and environmental sustainability. This study investigates the integration of sensor technology into marine cables to enable real-time monitoring, focusing on tidal cycles and wave characteristics. A 2000 m cable demonstrator was deployed off the coast of Portugal, featuring three active repeater nodes equipped with pressure sensors at varying depths. The goal was to estimate hourly wave periods using fast Fourier transform and calculate significant wave height via a custom peak detection algorithm. The results showed strong coherence with tidal depth variations, with wave period estimates closely aligning with forecasts. The wave height estimations exhibited a clear relationship with tidal cycles, which demonstrates the system’s sensitivity to coastal hydrodynamics, a factor that numerical models designed for open waters often fail to capture. The study also highlights challenges in deep-water monitoring, such as signal attenuation and the need for high sampling rates. Overall, this research emphasises the scalability of sensor-integrated smart marine cables, offering a transformative opportunity to expand oceanographic monitoring capabilities. The findings open the door for future real-time ocean monitoring systems that can deliver valuable insights for coastal management, environmental monitoring and scientific research.

  • 11
  • 11