Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Rita Lopes

2016

Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?

Authors
Graharni, EB; Knelman, JE; Schindlbacher, A; Siciliano, S; Breulmann, M; Yannarell, A; Bemans, JM; Abell, G; Philippot, L; Prosser, J; Foulquier, A; Yuste, JC; Glanville, HC; Jones, DL; Angel, F; Salminen, J; Newton, RJ; Buergmann, H; Ingram, LJ; Hamer, U; Siljanen, HMP; Peltoniemi, K; Potthast, K; Baneras, L; Hartmann, M; Banerjee, S; Yu, RQ; Nogaro, G; Richter, A; Koranda, M; Castle, SC; Goberna, M; Song, B; Chatterjee, A; Nunes, OC; Lopes, AR; Cao, YP; Kaisermann, A; Hallin, S; Strickland, MS; Garcia Pausas, J; Barba, J; Kang, H; Isobe, K; Papaspyrou, S; Pastorelli, R; Lagomarsino, A; Lindstrom, ES; Basiliko, N; Nemergut, DR;

Publication
FRONTIERS IN MICROBIOLOGY

Abstract
Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

2015

Responses of the alga Pseudokirchneriella subcapitata to long-term exposure to metal stress

Authors
Machado, MD; Lopes, AR; Soares, EV;

Publication
JOURNAL OF HAZARDOUS MATERIALS

Abstract
The green alga Pseudokirchneriella subcapitata has been widely used in ecological risk assessment, usually based on the impact of the toxicants in the alga growth. However, the physiological causes that lead algal growth inhibition are not completely understood. This work aimed to evaluate the biochemical and structural modifications in P. subcapitata after exposure, for 72 h, to three nominal concentrations of Cd(II), Cr(VI), Cu(II) and Zn(II), corresponding approximately to 72 h-EC10 and 72 h-EC50 values and a high concentration (above 72 h-EC90 values). The incubation of algal cells with the highest concentration of Cd(II), Cr(VI) or Cu(II) resulted in a loss of membrane integrity of 16,38 and 55%, respectively. For all metals tested, an inhibition of esterase activity, in a dose-dependent manner, was observed. Reduction of chlorophyll a content, decrease of maximum quantum yield of photosystem II and modification of mitochondrial membrane potential was also verified. In conclusion, the exposure of P. subcapitata to metals resulted in a perturbation of the cell physiological status. Principal component analysis revealed that the impairment of esterase activity combined with the reduction of chlorophyll a content were related with the inhibition of growth caused by a prolonged exposure to the heavy metals.

2015

Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health

Authors
Becerra Castro, C; Lopes, AR; Vaz Moreira, I; Silva, EF; Manaia, CM; Nunes, OC;

Publication
ENVIRONMENT INTERNATIONAL

Abstract
The reuse of treated wastewater, in particular for irrigation, is an increasingly common practice, encouraged by governments and official entities worldwide. Irrigation with wastewater may have implications at two different levels: alter the physicochemical and microbiological properties of the soil and/or introduce and contribute to the accumulation of chemical and biological contaminants in soil. The first may affect soil productivity and fertility; the second may pose serious risks to the human and environmental health. The sustainable wastewater reuse in agriculture should prevent both types of effects, requiring a holistic and integrated risk assessment. In this article we critically review possible effects of irrigation with treated wastewater, with special emphasis on soil microbiota. The maintenance of a rich and diversified autochthonous soil microbiota and the use of treated wastewater with minimal levels of potential soil contaminants are proposed as sine qua non conditions to achieve a sustainable wastewater reuse for irrigation.

2016

Irrigation with treated wastewater: Potential impacts on microbial function and diversity in agricultural soils

Authors
Lopes, AR; Becerra Castro, C; Vaz Moreira, I; Silva, MEF; Nunes, OC; Manaia, CM;

Publication
Handbook of Environmental Chemistry

Abstract
The reuse of treated wastewater could be a promising measure to attenuate the water scarcity burden. In agriculture, irrigation with wastewater may contribute to improve production yields, reduce the ecological footprint and promote socioeconomic benefits. However, it cannot be considered exempt of adverse consequences in environmental and human health. Apart from the introduction of some biological and chemical hazardous agents, the disturbance of the indigenous soil microbial communities and, thus, of vital soil functions impacting soil fertility may occur. The consequences of these disturbances are still poorly understood. This chapter summarises the physicochemical and microbiological alterations in soil resultant from irrigation with treated wastewater that are described in scientific literature. These alterations, which involve a high complexity of variables (soil, wastewater, climate, vegetal cover), may have impacts on soil quality and productivity. In addition, possible health risks may arise, in particular through the direct or indirect contamination of the food chain with micropollutants, pathogens or antibiotic resistance determinants. The current state of the art suggests that irrigation with treated wastewater may have a multitude of long-term implications on soil productivity and public health. Although further research is needed, it seems evident that the analysis of risks associated with irrigation with treated wastewater must take into account not only the quality of water, but other aspects as diverse as soil microbiota, soil type or the cultivated plant species. © 2016 Springer International Publishing Switzerland.

2014

Bacterial community variations in an alfalfa- rice rotation system revealed by 16S rRNA gene 454-pyrosequencing

Authors
Lopes, AR; Manaia, CM; Nunes, OC;

Publication
FEMS MICROBIOLOGY ECOLOGY

Abstract
Crop rotation is a practice harmonized with the sustainable rice production. Nevertheless, the implications of this empirical practice are not well characterized, mainly in relation to the bacterial community composition and structure. In this study, the bacterial communities of two adjacent paddy fields in the 3rd and 4th year of the crop rotation cycle and of a nonseeded subplot were characterized before rice seeding and after harvesting, using 454-pyrosequencing of the 16S rRNA gene. Although the phyla Acidobacteria, Proteobacteria, Chloroflexi, Actinobacteria and Bacteroidetes predominated in all the samples, there were variations in relative abundance of these groups. Samples from the 3rd and 4th years of the crop rotation differed on the higher abundance of groups of presumable aerobic bacteria and of presumable anaerobic and acidobacterial groups, respectively. Members of the phylum Nitrospira were more abundant after rice harvest than in the previously sampled period. Rice cropping was positively correlated with the abundance of members of the orders Acidobacteriales and Solibacterales' and negatively with lineages such as Chloroflexi Ellin6529'. Studies like this contribute to understand variations occurring in the microbial communities in soils under sustainable rice production, based on real-world data.

2013

Molinate biodegradation in soils: natural attenuation versus bioaugmentation

Authors
Lopes, AR; Danko, AS; Manaia, CM; Nunes, OC;

Publication
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY

Abstract
The aims of the present study were to assess the potential of natural attenuation or bioaugmentation to reduce soil molinate contamination in paddy field soils and the impact of these bioremediation strategies on the composition of soil indigenous microbiota. A molinate mineralizing culture (mixed culture DC) was used as inoculum in the bioaugmentation assays. Significantly higher removal of molinate was observed in bioaugmentation than in natural attenuation microcosms (63 and 39 %, respectively) after 42 days of incubation at 22 A degrees C. In the bioaugmentation assays, the impact of Gulosibacter molinativorax ON4(T) on molinate depletion was observed since the gene encoding the enzyme responsible for the initial molinate breakdown (harboured by that actinobacterium) was only detected in inoculated microcosms. Nevertheless, the exogenous mixed culture DC did not overgrow as the heterotrophic counts of the bioaugmentation microcosms were not significantly different from those of natural attenuation and controls. Moreover, the actinobacterial clone libraries generated from the bioaugmentation microcosms did not include any 16S rRNA gene sequences with significant similarity to that of G. molinativorax ON4(T). The multivariate analysis of the 16S rRNA DGGE patterns of the soil microcosm suggested that the activity of mixed culture DC did not affect the soil bacterial community structure since the DGGE patterns of the bioaugmentation microcosms clustered with those of natural attenuation and controls. Although both bioremediation approaches removed molinate without indigenous microbiota perturbation, the results suggested that bioaugmentation with mixed culture DC was more effective to treat soils contaminated with molinate.

  • 2
  • 2