Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2024

Virtual power plant optimal dispatch considering power-to-hydrogen systems

Authors
Rodrigues, L; Soares, T; Rezende, I; Fontoura, J; Miranda, V;

Publication
International Journal of Hydrogen Energy

Abstract
Power-to-Hydrogen (P2H) clean systems have been increasingly adopted for Virtual Power Plant (VPP) to drive system decarbonization. However, current models for the joint operation of VPP and P2H often disregard the full impact on grid operation or hydrogen supply to multiple consumers. This paper contributes with a VPP operating model considering a full Alternating Current Optimal Power Flow (AC OPF) while integrating different paths for the use of green hydrogen, such as supplying hydrogen to a Combined Heat and Power (CHP), industry and local hydrogen consumers. The proposed framework is tested using a 37-bus distribution grid and the results illustrate the benefits that a P2H plant can bring to the VPP in economic, grid operation and environmental terms. An important conclusion is that depending on the prices of the different hydrogen services, the P2H plant can increase the levels of self-sufficiency and security of supply of the VPP, decrease the operating costs, and integrate more renewables. © 2024 Hydrogen Energy Publications LLC

2024

Collective Asset Sharing Mechanisms for PV and BESS in Renewable Energy Communities

Authors
Guedes, W; Oliveira, C; Soares, TA; Dias, BH; Matos, M;

Publication
IEEE TRANSACTIONS ON SMART GRID

Abstract
The energy sector transition to more decentralized and renewable structures requires greater participation by local consumers, which may be enabled by innovative models such as the setup of renewable energy communities (RECs). To maximize the self-consumption of local renewable energy generated by assets normally connected to the low voltage distribution grid, these RECs typically involve jointly owned assets such as collective photovoltaic solar panels (CPVs) and collective energy storage systems (CESS). This work proposes a novel mathematical model for a REC, accounting for three distinct economic approaches to the redistribution of collective benefits among community members. The main objective of this study is to understand how the participation of community members in collective assets (CAs) can help increase the fairness and equity of RECs. An illustrative REC case comprising members with individual and collective ownership of the assets is used to assess the proposed economic approaches. Extracting several answers, among them that the most advantageous configuration comes from agents with quotas in the CESS and CPV. An important conclusion is that depending on the selected economic approach, the social welfare and agent's revenue vary significantly. In any case, CESSs increase equity among REC members.

2024

A Novel Three-Phase Multiobjective Unified Power Quality Conditioner

Authors
Monteiro, V; Moreira, C; Lopes, JAP; Antunes, CH; Osorio, GJ; Catalao, JPS; Afonso, JL;

Publication
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Abstract
The decarbonization of the economy and the increasing integration of renewable energy sources into the generation mix are bringing new challenges, requiring novel technological solutions in the topic of smart grids, which include smart transformers and energy storage systems. Additionally, power quality is a vital concern for the future smart grids; therefore, the continuous development of power electronics solutions to overcome power quality problems is of the utmost importance. In this context, this article proposes a novel three-phase multiobjective unified power quality conditioner (MO-UPQC), considering interfaces for solar PV panels and for energy storage in batteries. The MO-UPQC is capable of compensating power quality problems in the voltages (at the load side) and in the currents (at the power grid side), while it enables injecting power into the grid (from the PV panels or batteries) or charging the batteries (from the PV panels or from the grid). Experimental results were obtained with a three-phase four-wire laboratory prototype, demonstrating the feasibility and the large range of applications of the proposed MO-UPQC.

2024

Flexibility extension in hydropower for the provision of frequency control services within the European energy transition

Authors
Vasconcelos, MH; Castro, MV; Nicolet, C; Moreira, CL;

Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
This paper presents a comprehensive assessment of the large-scale deployment of hydropower on the provision of frequency regulation services, when equipped with the extended flexibility solutions being developed and/or tested within the scope of the XFLEX HYDRO project. The current analysis is performed on the Iberian Peninsula (IP) power grid considering its interconnection to the Continental Europe (CE) system, since this power system zone is expected to have the most severe frequency transient behaviour in future scenarios with increased shares of variable renewable energies. For this purpose, prospective scenarios with increased shares of time variable renewable generation were identified and analysed. To assess the impacts of the hydropower flexibility solutions on frequency dynamics after a major active power loss, extensive time domain simulations were performed of the power system, including reliable reduced order dynamic models for the hydropower flexibility solutions under evaluation. This research assesses the effects of synchronous and synthetic inertia, and of the Frequency Containment Reserve (FCR) and Fast Frequency Response (FFR) services as specified in European grid codes. The main findings highlight the potential of hydropower inertia and of adopting a variable speed technology for enhancing frequency stability, while contribute to better understand the role of hydropower plants in future power systems.

2024

Uncertainty-Aware Procurement of Flexibilities for Electrical Grid Operational Planning

Authors
Bessa, RJ; Moaidi, F; Viana, J; Andrade, JR;

Publication
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY

Abstract
In the power system decarbonization roadmap, novel grid management tools and market mechanisms are fundamental to solving technical problems concerning renewable energy forecast uncertainty. This work proposes a predictive algorithm for procurement of grid flexibility by the system operator (SO), which combines the SO flexible assets with active and reactive power short-term flexibility markets. The goal is to reduce the cognitive load of the human operator when analyzing multiple flexibility options and trajectories for the forecasted load/RES and create a human-in-the-loop approach for balancing risk, stakes, and cost. This work also formulates the decision problem into several steps where the operator must decide to book flexibility now or wait for the next forecast update (time-to-decide method), considering that flexibility (availability) price may increase with a lower notification time. Numerical results obtained for a public MV grid (Oberrhein) show that the time-to-decide method improves up to 22% a performance indicator related to a cost-loss matrix, compared to the option of booking the flexibility now at a lower price and without waiting for a forecast update.

2024

A review on the decarbonization of high-performance computing centers

Authors
Silva, CA; Vilaça, R; Pereira, A; Bessa, RJ;

Publication
RENEWABLE & SUSTAINABLE ENERGY REVIEWS

Abstract
High-performance computing relies on performance-oriented infrastructures with access to powerful computing resources to complete tasks that contribute to solve complex problems in society. The intensive use of resources and the increase in service demand due to emerging fields of science, combined with the exascale paradigm, climate change concerns, and rising energy costs, ultimately means that the decarbonization of these centers is key to improve their environmental and financial performance. Therefore, a review on the main opportunities and challenges for the decarbonization of high-performance computing centers is essential to help decision-makers, operators and users contribute to a more sustainable computing ecosystem. It was found that state-of-the-art supercomputers are growing in computing power, but are combining different measures to meet sustainability concerns, namely going beyond energy efficiency measures and evolving simultaneously in terms of energy and information technology infrastructure. It was also shown that policy and multiple entities are now targeting specifically HPC, and that identifying synergies with the energy sector can reveal new revenue streams, but also enable a smoother integration of these centers in energy systems. Computing-intensive users can continue to pursue their scientific research, but participating more actively in the decarbonization process, in cooperation with computing service providers. Overall, many opportunities, but also challenges, were identified, to decrease carbon emissions in a sector mostly concerned with improving hardware performance.

  • 1
  • 315