Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2023

Improving Dynamic Security in Islanded Power Systems: Quantification of Minimum Synchronous Inertia Considering Fault-Induced Frequency Deviations

Authors
Gouveia, J; Moreira, CL; Lopes, JAP;

Publication
ELECTRICITY

Abstract
In isolated power systems with very high instantaneous shares of renewables, additional inertia should be used as a complementary resource to battery energy storage systems (BESSs) for improving frequency stability, which can be provided by synchronous condensers (SCs) integrated into the system. Therefore, this paper presents a methodology to infer the system dynamic security, with respect to key frequency indicators, following critical disturbances. Of particular interest is the evidence that multiple short-circuit locations should be considered as reference disturbances regarding the frequency stability in isolated power grids with high shares of renewables. Thus, an artificial neural network (ANN) structure was developed, aiming to predict the network frequency nadir and Rate of Change of Frequency (RoCoF), considering a certain operating scenario and disturbances. For the operating conditions where the system frequency indicators are violated, a methodology is proposed based on a gradient descent technique, which quantifies the minimum amount of additional synchronous inertia (SCs which need to be dispatch) that moves the system towards its dynamic security region, exploiting the trained ANN, and computing the sensitivity of its outputs with respect to the input defining the SC inertia.

2023

TSO-DSO Coordinated Operational Planning in the Presence of Shared Resources

Authors
Simoes, M; Madureira, AG; Soares, F; Lopes, JP;

Publication
2023 IEEE BELGRADE POWERTECH

Abstract
Electric power systems are currently experiencing a profound change, as increasing amounts of Renewable Energy Sources (RESs) displace conventional forms of generation. This development has gone hand-in-hand with an increasing share of distributed power generation being connected directly to the Distribution Network (DN), and the widespread of other types of Distributed Energy Resources (DERs), such as Energy Storage Sytems (ESSs), Electric Vehicles (EVs), and active (flexible) consumers. As these trends are expected to continue, this will require a profound revision of the way Transmission System Operators (TSOs) and Distribution System Operators (DSOs) interact with each other to fully benefit from the growing flexibility that is available at the DN level. In this work we propose a new tool for the coordinated operational planning of transmission and distribution systems, considering the existence of shared resources that can be simultaneously used by TSO and DSOs for the optimal operation of their networks. The tool uses advanced distributed optimization techniques, namely the Alternating Direction Method of Multipliers (ADMM) in order to maintain data privacy of the several agents involved in the optimization problem, and keep the tractability of the problem. The proposed tool is applied to modified IEEE test systems, and the results obtained highlight the benefits of the proposed coordination mechanism to solve problems occurring simultaneously at the transmission and DN-levels.

2023

Evaluation of the economic, technical, and environmental impacts of multi-energy system frameworks in distribution networks

Authors
Coelho, A; Soares, F; Iria, J; Lopes, JP;

Publication
2023 IEEE BELGRADE POWERTECH

Abstract
This paper presents a general comparison between network-secure and network-free optimization frameworks to manage flexible multi-energy resources. Both frameworks were implemented in a test case that includes electricity, gas, and heat distribution networks. Several potential scenarios for the decarbonization of the multi-energy system were simulated. The economic, technical, and environmental impacts were compiled. The network-secure framework is highly recommended to avoid service disruptions due to network violations, but its implementation comes with a price - overall operational costs increase, sometimes substantially.

2023

Modeling demand flexibility impact on the long-term adequacy of generation systems

Authors
Alves, IM; Carvalho, LM; Lopes, JAP;

Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
This paper proposes a novel probabilistic model for quantifying the impact of demand flexibility (DF) on the long-term generation system adequacy via Sequential Monte Carlo Simulation (SMCS) method. Unlike load shedding, DF can be considered an important instrument to postpone bulk consumption from periods with limited reserves to periods with more generating capacity available, avoiding load shedding and increasing the integration of variable renewable generation, such as wind power. DF has been widely studied in terms of its contribution to the system's social welfare, resulting in numerous innovative approaches ranging from the flexibility modeling of individual electric loads to the definition of aggregation strategies for optimally deploying this lever in competitive markets. To add to the current state-of-the-art, a new model is proposed to quantify DF impact on the traditional reliability indices, such as the Loss of Load Expectation (LOLE) and the Expected Energy Not Supplied (EENS), enabling a new perspective for the DF value. Given the diverse mechanisms associated with DF of different consumer types, the model considers the uncertainties associated with the demand flexibility available in each hour of the year and with the rebound effect, i.e., the subsequent change of consumption patterns following a DF mobilization event. Case studies based on a configuration of the IEEE-RTS 79 test system with wind power demonstrate that the DF can substantially improve the reliability indices of the static and operational reserve while decreasing the curtailment of variable generation cause by unit scheduling priorities or by short-term generation/demand imbalances.

2023

The role of hydrogen electrolysers in frequency related ancillary services: A case study in the Iberian Peninsula up to 2040

Authors
Ribeiro, FJ; Lopes, JAP; Fernandes, FS; Soares, FJ; Madureira, AG;

Publication
SUSTAINABLE ENERGY GRIDS & NETWORKS

Abstract
This paper investigates the contribution of hydrogen electrolysers (HEs) for frequency related Ancillary Services (AS), namely Frequency Containment Reserve (FCR), Synthetic Inertia (SI) , Fast Frequency Response (FFR) in future operation scenarios in the Iberian Peninsula (IP) considering low system iner-tia. The proposed framework for analysis consists of a dynamic model developed in MATLAB/Simulink. Simulations show that an instantaneous inverter based resource (IBR) trip induced by a grid fault may lead to the occurrence of values of Rate of Change of Frequency (RoCoF) close to undesirable thresholds if the FCR is provided solely by the conventional generators. The obtained results illustrate that HEs can outperform conventional generators on the provision of FCR. Furthermore, the FCR is unable to unlock the full potential of fast responding HEs. This suggests the advantage of providing additional AS such as SI or FFR in critical periods. Simulations also show that the benefit of additional AS can be limited in specific conditions, especially depending on the evolution of HEs' ramping capabilities, but are still a relevant complement to other solutions designed to deal with low inertia in power systems such as synchronous compensators.& COPY; 2023 Elsevier Ltd. All rights reserved.

2023

Multi-Class Stability Analysis of the Grid-Forming Placement Problem

Authors
Fernandes, F; Lopes, JP; Moreira, C;

Publication
2023 IEEE BELGRADE POWERTECH

Abstract
This paper evidences the ability of a VSM-based grid-forming to mitigate stability problems of different classes, raising a special concern towards the importance of its location in systems with large converter-interfaced renewable energy systems. Within this context, a multi-class stability assessment, that pillars on the simulation of different nature disturbances and in the subsequent evaluation of a 4 index set, was performed. Such analysis was carried out on a modified version of the IEEE39 Test System, using DigSILENT Power Factory as the simulation engine.

  • 10
  • 315