Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2019

Optimal Operation of an Energy Hub in the Presence of Uncertainties

Authors
Javadi, MS; Nezhad, AE; Anvari Moghaddam, A; Guerrero, JM; Lotfi, M; Catalao, JPS;

Publication
2019 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2019 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE)

Abstract
This paper presents an operation strategy of energy hubs in the presence of electrical, heating, and cooling demand as well as renewable power generation uncertainties. The proposed strategy can be used for optimal decision making of energy providers companies, as well as, other private participants of hub operators. The presence of electrical energy storage devise in the assumed energy hub can handle the fluctuations in the operating points raised by such uncertainties. In order to modeling of hourly demands and renewable power generation uncertainties a scenario generation model is adopted in this paper. The considered energy hub in this study follows a centralized framework and the energy hub operator is responsible for optimal operation of the hub assets based on the day-ahead scheduling. The simulation result illustrates that in the presence of electrical energy storage devices the optimal operation of hub assets can be attained.

2019

Demand Response Program Implementation for Day-Ahead Power System Operation

Authors
Lotfi, M; Catalao, JPS; Javadi, MS; Nezhad, AE; Shafie khah, M;

Publication
2019 IEEE MILAN POWERTECH

Abstract
This paper demonstrates day-ahead operation of power systems in the presence of a Demand Response Program (DRP) for serving exact amounts of demanded energy over the operational horizon. The proposed two-stage model features a here-and-now framework for shaping the aggregated demands during operation. First, the day-ahead scheduling problem is solved by adopting Unit Commitment (UC) to determine the generation level of power generation units as well as the Locational Marginal Prices (LMPs). Afterwards, the obtained LMPs are considered as the Time of Use (ToU) for the second step of the scheduling and reshaping the demanded loads of each aggregator. A new methodology is provided in this paper to estimate the reaction of consumers behavior in terms of encouraging their participation in DRPs. Unlike classical models which adopt load reduction over the operational horizon, this model ensures that the total demanded loads will be served. Therefore, the total supplied energy for the operational period before and after DRP implementation remains unchanged. Meanwhile, the total payment of consumers will be considerably reduced by adopting this strategy. The simulation results on the 6-bus test system clarify that the proposed model can reduce the total operational cost as well as smoothen the load profile and nodal prices over the operational horizon.

2019

Implementation of Consensus-ADMM Approach for Fast DC-OPF Studies

Authors
Javadi, M; Nezhad, AE; Gough, M; Lotfi, M; Catalao, JPS;

Publication
2019 2ND INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES (SEST 2019)

Abstract
This paper proposes a novel method for solving the Optimal Power Flow (OPF) problem in conditions close to realtime. The linearized cost function of the generating units is used to this end. Besides, the presented linear model is solved using the Consensus Alternating Direction Method of Multipliers (C-ADMM) approach. This technique would provide the possibility of modeling the problem both in centralized and decentralized manners. The suggested method exploits the power flow results obtained from the previous iteration to considerably improve the rate of convergence. As the C-ADMM method uses an iterative technique, Lagrange multipliers, and the norm function, the rate of convergence highly depends upon assigning the initial conditions and the optimality gap. Thus, using the operating points of the previous instant due to being close to the operating point of the current instant would enhance the results. The proposed model has been implemented on two case studies including the Pennsylvania-New Jersey-Maryland (PJM) network to verify the results and the 9-bus system to evaluate the performance of the model for the daily operation. © 2019 IEEE.

2019

Optimal Sizing and Siting of Electrical Energy Storage Devices for Smart Grids Considering Time-of-Use Programs

Authors
Javadi, MS; Firuzi, K; Rezanejad, M; Lotfi, M; Gough, M; Catalao, JPS;

Publication
45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019)

Abstract
This paper focuses on the long-term planning of power systems considering the impacts of Electrical Energy Storage Devices (ESSD) as well as Demand Response Programs (DRPs). The proposed model incorporates a two-stage optimization strategy in order to reduce the computational burden of the nonlinear problem. The upper-level of optimization model includes investment decision variables (long-term planning) while in the lower-level, the optimal operation of the model for short-term horizon has been addressed. In the operational stage, the optimal scheduling of power system in the presence of suggested ESSD size and location from the upper level is evaluated. Moreover, the Time-of-Use (ToU) Demand Response (DR) pricing scheme has been applied in the operational stage to evaluate its capability to reduce the total operating costs. The simulation results on the standard 6-bus test system validates the applicability of the proposed two-stage optimization model and illustrates that the optimal sizing and location of ESSDs along with DRP implementation could effectively reduce the total systems costs and improve the power system load factor.

2019

Assessing the benefits of capacity payment, feed-in-tariff and time-of-use programme on long-term renewable energy sources integration

Authors
Javadi, MS; Nezhad, AE; Shafie khah, M; Siano, P; Catalao, JPS;

Publication
IET SMART GRID

Abstract
Recently, demand response programmes (DRPs) have captured great attention in electric power systems. DRPs such as time-of-use (ToU) programme can be efficiently employed in the power system planning to reform the long-term behaviour of the load demands. The composite generation expansion planning (GEP) and transmission expansion planning (TEP) known as composite GEP–TEP is of high significance in power systems to meet the future load demand of the system and also integrate renewable energy sources (RESs). In this regard, this study presents a dynamic optimisation framework for the composite GEP–TEP problem taking into consideration the ToU programme and also, the incentive-based and supportive programmes. Accordingly, the performances of the capacity payment and feed-in tariff mechanisms and the ToU programme in integrating RESs and reducing the total cost have been evaluated in this study. The problem has been formulated and solved as a standard two-stage mixed-integer linear programming model aimed at minimising the total costs. In this model, the ToU programme is applied and the results are fed into the expansion planning problem as the input. The proposed framework is simulated on the IEEE Reliability Test System to verify the effectiveness of the model and discuss the results obtained from implementing the mentioned mechanisms to support the RESs integration.

2019

Hybrid mixed-integer non-linear programming approach for directional over-current relay coordination

Authors
Javadi, MS; Nezhad, AE; Anvari Moghadam, A; Guerrero, JM;

Publication
JOURNAL OF ENGINEERING-JOE

Abstract

  • 107
  • 317