2024
Authors
Silva, CAM; Bessa, RJ; Andrade, JR; Coelho, FA; Costa, RB; Silva, CD; Vlachodimitropoulos, G; Stavropoulos, D; Chadoulos, S; Rua, DE;
Publication
ISCIENCE
Abstract
Climate change, geopolitical tensions, and decarbonization targets are bringing the resilience of the European electric power system to the forefront of discussion. Among various regulatory and technological solutions, voluntary demand response can help balance generation and demand during periods of energy scarcity or renewable energy generation surplus. This work presents an open data service called Interoperable Recommender that leverages publicly accessible data to calculate a country-specific operational balancing risk, providing actionable recommendations to empower citizens toward adaptive energy consumption, considering interconnections and local grid constraints. Using semantic interoperability, it enables third- party services to enhance energy management and customize applications to consumers. Real-world pilots in Portugal, Greece, and Croatia with over 300 consumers demonstrated the effectiveness of providing signals across diverse contexts. For instance, in Portugal, 7% of the hours included actionable recommendations, and metering data revealed a consumption decrease of 4% during periods when consumers were requested to lower consumption.
2024
Authors
Gomes, I; Paulos, J; Bessa, RJ; Sousa, M; Rebelo, R;
Publication
2024 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES, SEST 2024
Abstract
The footwear industry is energy-intensive and, consequently, a source of large amounts of greenhouse gas emissions every year. Issues related to climate change and growing conflicts on a global scale that impact the prices of raw materials and energy prices have led companies in the footwear industry to take actions to mitigate these impacts. Among these actions is the growing focus on producing its energy from energy systems based on renewable sources and battery energy storage units. This paper addresses the energy-efficient manufacturing scheduling in footwear industries with onsite energy production from a photovoltaic system with batteries. The problem is formulated as a mixed integer linear programming problem. Different objectives are presented, depending on the priorities of the entity that owns the footwear factory, namely, minimizing operation costs, minimizing CO2 emissions, or both. The case study is footwear factory located in Portugal that uses a manufacturing process based on injection molding. The results show the effectiveness of the proposed approach, with active demand side management playing a fundamental role in shifting periods of higher energy consumption to periods of lower prices or lower CO2 emissions. Also, Pareto fronts are depicted to make the trade-off between CO2 emissions and operation costs. As expected, the reduction of CO2 emissions promotes an increase on operation costs. Furthermore, a sensitivity analysis is carried out on the increase in photovoltaic capacity and battery capacity. The results show that increasing photovoltaic and battery capacity promotes reductions in costs up to 30% and in the emissions up to 37%.
2024
Authors
Paulos, JP; Macedo, P; Bessa, R; Fidalgo, JN; Oliveira, J;
Publication
2024 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE, ISGT EUROPE
Abstract
This article proposes a methodology for high loss detection in LV network, based on a very small set of commonly available data/metadata from networks connected to an MV/LV substation. The approach is based on a combination of predictors from several distinct categories, including network data, metadata, and measured smart meter data. Several independent groups of unranked real networks were simulated, and it was possible to find the top ten networks with the highest level of losses with a very satisfactory success rate (76% to 98%), depending on selected groupings folds. Due to the impracticability of analyzing all LV networks, the identification of the highest loss ones is essential for the definition of loss reduction planning since, with this list filtering, it is possible to determine with a good degree of certainty which networks require maintenance or upgrade.
2024
Authors
Cremer, JL; Kelly, A; Bessa, RJ; Subasic, M; Papadopoulos, PN; Young, S; Sagar, A; Marot, A;
Publication
2024 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE, ISGT EUROPE
Abstract
Advanced control, operation, and planning tools of electrical networks with ML are not straightforward. 110 experts were surveyed to show where and how ML algorithms could advance. This paper assesses this survey and research environment. Then, it develops an innovation roadmap that helps align our research community with a goal-oriented realisation of the opportunities that AI upholds. This paper finds that the R&D environment of system operators (and the surrounding research ecosystem) needs adaptation to enable faster developments with AI while maintaining high testing quality and safety. This roadmap serves system operators, academics, and labs advancing next-generation electrical network tools.
2024
Authors
Fonseca, NS; Soares, F; Iria, J;
Publication
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024
Abstract
This paper proposes a planning optimization model to help distribution system operators (DSOs) decide on the most cost-effective investments to handle the wholesale market participation of distributed energy resources (DERs). Two investment options are contemplated: market redesign; and network augmentation. The market redesign is employed through a DSO framework used to coordinate the network-secure participation of DERs in wholesale markets. Network augmentation is achieved by investing in new HV/MV OLTC and MV/LV transformers. To evaluate the performance of our planning model, we used the IEEE 69-bus network with three DER aggregators operating under different DER scenarios. Our tests show that the planning problem suggests investment decisions that can help DSOs guarantee network security. Market redesign has shown to be the most cost-effective option. However, this option is not always viable, namely in scenarios where not enough DERs are available to provide network support services. In such scenarios, hybrid investment solutions are required.
2024
Authors
Félix, P; Oliveira, F; Soares, FJ;
Publication
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024
Abstract
This paper presents a methodology for assessing the long-term economic feasibility of renewable energy-based systems for green hydrogen and ammonia production. A key innovation of this approach is the incorporation of a predictive algorithm that optimizes day-ahead system operation on an hourly basis, aiming to maximize profit. By integrating this feature, the methodology accounts for forecasting errors, leading to a more realistic economic evaluation. The selected case study integrates wind and PV as renewable energy sources, supplying an electrolyser and a Haber-Bosch ammonia production plant. Additionally, all supporting equipment, including an air separation unit for nitrogen production, compressors, and hydrogen / nitrogen / ammonia storage devices, is also considered. Furthermore, an electrochemical battery is included, allowing for an increased electrolyser load factor and smoother operating regimes. The results demonstrate the effectiveness of the proposed methodology, providing valuable insights and performance indicators for this type of energy systems, enabling informed decision-making by investors and stakeholders.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.