2018
Authors
Price J.; Zeyringer M.; Konadu D.; Sobral Mourão Z.; Moore A.; Sharp E.;
Publication
Applied Energy
Abstract
The decarbonisation of the power sector is key to achieving the Paris Agreement goal of limiting global mean surface temperature rise to well below 2 °C. This will require rapid, national level transitions to low carbon electricity generation, such as variable renewables (VRE), nuclear and fossil fuels with carbon capture and storage, across the world. At the same time it is essential that future power systems are sustainable in the wider sense and thus respect social, environmental and technical limitations. Here we develop an energy-land-water nexus modelling framework and use it to perform a scenario analysis with the aim of understanding the planning and operational implications of these constraints on Great Britain's (GB) power system in 2050. We consider plausible scenarios for limits on installed nuclear capacity, siting restrictions that shape VRE deployment and water use for thermal power station cooling. We find that these factors combined can lead to up to a 25% increase in the system's levelised cost of electricity (LCOE). VRE siting restrictions can result in an up to 13% increase in system LCOE as the deployment of onshore wind is limited while nuclear capacity restrictions can drive an up to 17% greater LCOE. We also show that such real-world limitations can cause substantial changes in system design both in terms of the spatial pattern of where generators are located and the capacity mix of the system. Thus we demonstrate the large impact simultaneously considering a set of nexus factors can have on future GB power systems. Finally, given our plausible assumptions about key energy-land-water restrictions and emission limits effecting the GB power system in 2050, the cost optimal penetration of VREs is found to be at least 50%.
2018
Authors
McMahon, R; Santos, H; Mourao, ZS;
Publication
ENERGY AND BUILDINGS
Abstract
A ground-sourced heat pump (GSHP) was installed in a former Vicarage in Cambridgeshire, with a mix of solid wall structure built in the late 1800s and cavity wall section built in the 2000s, previously heated by oil. This type of building is usually considered unsuitable for heat pumps, unless substantial insulation work and extensive replacement of radiators are undertaken. Although the building had undergone a degree of retrofit to increase insulation, the GSHP was installed with the existing radiators. A detailed thermal model for the house was built in ESP-r and validated against experimental measurements taken from sensors in every room. The expected heating demands were computed from the model based on weather data and the GSHP system was designed accordingly. A compromise was made between minimizing the size of the heat pump and the achievable energy savings, which could have important implications for the way incentives for low-emissions heating systems are set up. Using the initial SAP assessment would have led to a substantial oversizing of the heat pump. The data collected so far show that an SPF of 2.9 has been achieved whilst maintaining comfortable (C-18) internal temperatures and emissions of CO2 have been reduced by 70%.
2018
Authors
Bernardo, H; Oliveira, F;
Publication
ENVIRONMENTS
Abstract
This paper presents results of work developed in the field of building energy benchmarking applied to the building stock of the Polytechnic Institute of Leiria, Portugal, based on a thorough energy performance characterisation of each of its buildings. To address the benchmarking of the case study buildings, an energy efficiency ranking system was applied. Following an energy audit of each building, they were grouped in different typologies according to the main end-use activities developed: Pedagogic buildings, canteens, residential buildings and office buildings. Then, an energy usage indicator was used to establish a metric to rank the buildings of each typology according to their energy efficiency. The energy savings potential was also estimated, based on the reference building energy usage indicator for each typology, and considering two different scenarios, yielding potential savings between 10% and 34% in final energy consumption.
2018
Authors
Bernardo, H; Gaspar, A; Antunes, CH;
Publication
SUSTAINABILITY
Abstract
Several technological, social and organizational factors influence energy management in school buildings, resulting in a complex situation away from the usual engineering approach. The selection of evaluation criteria to assess the energy performance of school buildings remains one of the most challenging aspects since these should accommodate the perspectives of the potential key stakeholders. This paper presents a comprehensive problem structuring approach combining Soft Systems Methodology and Value Focused Thinking to elicit and organize the multiple aspects that influence energy efficiency of school buildings. The main aim of this work is structuring the fundamental objectives to develop a criteria tree to be considered in a multi-criteria classification model to be used by management entities for rating overall energy performance of school buildings. This methodological framework helped grasping the main issues at stake for a thorough energy performance assessment of school buildings and the need to define adequate policies for improvement.
2018
Authors
Ndawula M.B.; Zhao P.; Hernando-Gil I.;
Publication
Proceedings - 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2018
Abstract
This paper presents a reliability-based approach for the design and deployment of an energy management system (EMS) by using 'smart' applications, such as energy storage (ES), to control battery power output in residential dwellings, and thus improve distribution-network reliability performance. The state of charge (SOC) of the battery system is designed based on time-varying electricity tariff, load demand and solar photovoltaic (PV) generation data to investigate a realistic test-case scenario. Additionally, a typical MV/LV urban distribution system is fully modelled and scripted to investigate the potential benefits that 'smart' interventions can offer to customers' quality of power supply. In this research, Monte-Carlo simulation method is further developed to include the time-variation of electricity demand profiles and failure rates of network components. Accordingly, the reliability-based effects from SOC variation in batteries are compared with an uncontrolled microgeneration (MG) scenario, by using different PV penetration levels to justify the value of control. The benefits are assessed through standard reliability indices measuring frequency and duration of power interruptions and most importantly, the energy not supplied to customers during sustained interruptions.
2018
Authors
Zhao P.; Hernando-Gil I.; Wu H.;
Publication
Proceedings - 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2018
Abstract
Microgrid, as an emerging small-scale power system comprising a range of power sources, power electronic interfaces, loads, storage units, and being able to supply remote areas or local communities, either can be operated in islanded or grid-connected mode. Based on this concept, this paper proposes the scalability assessment and day-ahead optimization, with time-varying load and time-of-use tariff data in 48 time-periods, for multiple microgrids applied in the accommodation area in a UK university, based on an existing microgrid test system currently under investigation in its Smart Grid Laboratory. Four different scenarios, including weekdays and weekends over two seasons (summer and winter), are analyzed to achieve the optimal scheduling of the microgrid technologies. In addition, a long-term planning assessment, on optimization over 20 years, is presented to discuss the influence of microgrids' power component depreciation and life span on total energy costs and savings.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.