Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2023

Behind-the-Meter Solar Disaggregation: The Value of Information

Authors
R.A, SMN; Mahmoodi, M; Attarha, A; Iria, J; Scott, P; Gordon, D;

Publication
2023 IEEE PES 15th Asia-Pacific Power and Energy Engineering Conference (APPEEC)

Abstract

2023

A Three-Stage Model to Manage Energy Communities, Share Benefits and Provide Local Grid Services

Authors
Rocha, R; Silva, R; Mello, J; Faria, S; Retorta, F; Gouveia, C; Villar, J;

Publication
ENERGIES

Abstract
This paper proposes a three-stage model for managing energy communities for local energy sharing and providing grid flexibility services to tackle local distribution grid constraints. The first stage addresses the minimization of each prosumer's individual energy bill by optimizing the schedules of their flexible resources. The second stage optimizes the energy bill of the whole energy community by sharing the prosumers' energy surplus internally and re-dispatching their batteries, while guaranteeing that each prosumer's new energy bill is always be equal to or less than the bill that results for this prosumer from stage one. This collective optimization is designed to ensure an additional collective benefit, without loss for any community member. The third stage, which can be performed by the distribution system operator (DSO), aims to solve the local grid constraints by re-dispatching the flexible resources and, if still necessary, by curtailing local generation or consumption. Stage three minimizes the impact on the schedule obtained at previous stages by minimizing the loss of profit or utility for all prosumers, which are furthermore financially compensated accordingly. This paper describes how the settlement should be performed, including the allocation coefficients to be sent to the DSO to determine the self-consumed and supplied energies of each peer. Finally, some case studies allow an assessment of the performance of the proposed methodology. Results show, among other things, the potential benefits of allowing the allocation coefficients to take negative values to increase the retail market competition; the importance of stage one or, alternatively, the need for a fair internal price to avoid unfair collective benefit sharing among the community members; or how stage three can effectively contribute to grid constraint solving, profiting first from the existing flexible resources.

2023

Flexibility Modeling and Trading in Renewable Energy Communities

Authors
Agrela, J; Rezende, I; Soares, T; Gouveia, C; Silva, R; Villar, J;

Publication
2023 19TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM

Abstract
This work presents an approach to the flexibility of energy consumption in Renewable Energy Communities (RECs). A two-stage model for quantifying the flexibility provided by the domestic energy resources operation and its negotiation in a market platform is proposed. In stage 1, the optimal consumption of each prosumer is determined, as well as the respective technical flexibility of their resources, namely the maximum and minimum resource operation limits. In stage 2, this technical flexibility is offered in a local flexibility-only market structure, in which both the DSO and the prosumers can present their flexibility needs and requirements. The flexibility selling and buying bids of the prosumers participating in the market are priced based on their base tariff, which is the energy cost of the prosumers corresponding to their optimal schedule of the first stage when no flexibility is provided. Therefore, providing flexibility is an incentive to reduce their energy bill or increase their utility, encouraging their participation in the local flexibility market.

2023

Operation and simulation of a renewable energy community based on a local post-delivery pool market

Authors
Tavares, T; Mello, J; Silva, R; Moreno, A; Garcia, A; Pacheco, J; Pereira, C; Amorim, M; Gouveia, C; Villar, J;

Publication
2023 19TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM

Abstract
This paper presents an innovative digital platform for managing energy communities with self-consumption and energy trading in a local electricity market. Its architecture is based on micro-services, such as the energy transaction service, the settlement service to compute the financial compensations among community members for the energy transacted, or a resource sizing service. This approach enables the platform to be more efficient and scalable, making easier to incorporate new functionalities while maintaining a secure community and energy transactions management. The transactions and settlement procedures, adapted to the Portuguese regulation, are described, and the results of the platform operating a post-delivery pool market are presented and analyzed. This paper contributes to the understanding and improvement of renewable energy communities' business models and management, offering insights for policymakers, researchers, and practitioners in the field.

2023

THE EUNIVERSAL PORTUGUESE DEMONSTRATOR: FROM MV-LV COORDINATED IDENTIFICATION OF FLEXIBILITY NEEDS TO ACTIVATION THROUGH THE UMEI

Authors
Mourão, RL; Gouveia, C; Sampaio, G; Retorta, F; Merckx, C; Benothman, F; Águas, A; Boto, P; Silva, CD; Milzer, G; Marzano, G; Dumont, C; Crucifix, P; Kaffash, M; Heylen, E;

Publication
IET Conference Proceedings

Abstract
The EUniversal project, funded by the European Union, aims to establish a universal approach to the utilization of flexibility by Distribution System Operators (DSOs) and their engagement with new flexibility markets. To achieve this objective, the project team has focused on developing the Universal Market Enabling Interface (UMEI) concept. This paper presents an overview of the process of adapting grid core systems to interact with different market platforms and agents, which is a key aspect of the real-world demonstration set to take place in Portugal. © The Institution of Engineering and Technology 2023.

2023

CHALLENGES AND CONSIDERATIONS FOR THE DESIGN AND IMPLEMENTATION OF A CENTRALIZED PROTECTION AND CONTROL SOLUTION FOR MV NETWORKS

Authors
Aleixo, AC; Dias Jorge, R; Gomes, F; Antunes, L; Barraca, JP; Carvalho, R; Antunes, M; Gomes, D; Gouveia, C; Carrapatoso, A; Alves, E; Andrade, J; Gonçalves, L; Falcão, F; Pinho, B; Pires, L;

Publication
IET Conference Proceedings

Abstract
The present paper presents the implementation of next-generation centralized Protection, Automation, and Control (PAC) solution for Medium Voltage (MV) power grids, developed in the scope of the SCALE project [1]. The main goals of the project are the development, testing, and field pilot deployment of an innovative, fully digital PAC system for Substation Automation (SAS), centralizing in a single device the functionalities of several bay-level Intelligent Electronic Devices (IED). The envisioned system, comprised of a Centralized Protection and Control (CPC) device and Merging Units (MU)/Process Interface Units (PIU), constitutes a highly flexible, resilient, future-proof solution that relies both on modern IEC 61850 standards and on legacy industrial protocols to guarantee multi-vendor interoperability and continued integration with multi-generation devices inside and outside of the substation. Centralizing SAS functionalities in a single device provides access to a wide range of data and measurements that unlocks technologically advanced substation-centric network automation applications. © The Institution of Engineering and Technology 2023.

  • 28
  • 332