2023
Authors
Baptista, J; Jesus, B; Cerveira, A; Pires, EJS;
Publication
SUSTAINABILITY
Abstract
The last two decades have witnessed a new paradigm in terms of electrical energy production. The production of electricity from renewable sources has come to play a leading role, thus allowing us not only to face the global increase in energy consumption, but also to achieve the objectives of decarbonising the economies of several countries. In this scenario, where onshore wind energy is practically exhausted, several countries are betting on constructing offshore wind farms. Since all the costs involved are higher when compared to onshore, optimising the efficiency of this type of infrastructure as much as possible is essential. The main aim of this paper was to develop an optimisation model to find the best wind turbine locations for offshore wind farms and to obtain the wind farm layout to maximise the profit, avoiding cable crossings, taking into account the wake effect and power losses. The ideal positioning of wind turbines is important for maximising the production of electrical energy. Furthermore, a techno-economic analysis was performed to calculate the main economic indicators, namely the net present value, the internal rate of return, and the payback period, to support the decision-making. The results showed that the developed model found the best solution that maximised the profits of the wind farm during its lifetime. It also showed that the location of the offshore substation played a key role in achieving these goals.
2023
Authors
Schneider, S; Zelger, T; Sengl, D; Baptista, J;
Publication
Abstract
2023
Authors
Grasel, B; Baptista, J; Tragner, M;
Publication
2023 International Conference on Smart Energy Systems and Technologies (SEST)
Abstract
2023
Authors
Gallarreta, A; Grasel, B; Gonzalez Ramos, J; Fernandez, I; Angulo, I; Arrinda, A; La Vega, D; Baptista, J; Tragner, M;
Publication
2023 International Conference on Smart Energy Systems and Technologies, SEST 2023
Abstract
This paper studies the suitability of the novel Light Quasi-Peak (Light-QP) measurement method to assess the high-frequency disturbances generated by the vehicle-to-grid (V2G) technology, by comparing the performance of the new method with respect to the standardized CISPR 16-1-1 method. For this purpose, the quasi-peak (QP) outputs obtained by both methods are compared, a statistical study of the differences in the spectral results is performed and the computational requirements of the two methods are evaluated. This paper demonstrates that the novel Light-QP method is a lighter technique to assess the QP amplitude of the conducted disturbances, as it requires 10 times less Fourier transforms and at least less than 90 % storage to process a 3 s length measurement. Furthermore, the QP outputs provided by the Light-QP method are comparable to the outputs of a digital implementation of the CISPR 16, since the differences in results are within the uncertainty limits defined in IEC 61000-4-30 standard for power-quality instruments in the CISPR Band A. The Light-QP method could be essential for the detection of the V2G disturbances in low-voltage grid, since it can be easily implemented in inexpensive power quality measurement instruments. The Light-QP method was presented in the IEC SC77 A WG9 for its possible inclusion in the next edition of IEC 61000-4-30 standard. © 2023 IEEE.
2023
Authors
Pires, EJS; Cerveira, A; Baptista, J;
Publication
COMPUTATION
Abstract
This work addresses the wind farm (WF) optimization layout considering several substations. It is given a set of wind turbines jointly with a set of substations, and the goal is to obtain the optimal design to minimize the infrastructure cost and the cost of electrical energy losses during the wind farm lifetime. The turbine set is partitioned into subsets to assign to each substation. The cable type and the connections to collect wind turbine-produced energy, forwarding to the corresponding substation, are selected in each subset. The technique proposed uses a genetic algorithm (GA) and an integer linear programming (ILP) model simultaneously. The GA creates a partition in the turbine set and assigns each of the obtained subsets to a substation to optimize a fitness function that corresponds to the minimum total cost of the WF layout. The fitness function evaluation requires solving an ILP model for each substation to determine the optimal cable connection layout. This methodology is applied to four onshore WFs. The obtained results show that the solution performance of the proposed approach reaches up to 0.17% of economic savings when compared to the clustering with ILP approach (an exact approach).
2023
Authors
Grasel B.; Puthenkalam S.; Baptista J.; Tragner M.;
Publication
IET Conference Proceedings
Abstract
The increasing number of vehicle to grid (V2G) charging stations connected to the electrical grid changes the characteristics of electrical distribution grids. Active power electronics introduces additional capacitance and inductance to the electrical grid and affects the frequency dependent grid impedance. This study shows the impact of a V2G charging station to the frequency dependent grid impedance up to 500 kHz. The LCL filter, the DC link capacitor and inductors cause parallel and series resonances. Resonance frequencies appear in a wide frequency range starting from 500 Hz up to 30 kHz. It is shown that the V2G charger can represent a source of supraharmonic emissions and the importance to consider supraharmonic emissions and the frequency dependent grid impedance to determine the impact of V2G chargers (active power electronics) to the electrical grid is outlined.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.