Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2023

TSO-DSO Coordinated Operational Planning in the Presence of Shared Resources

Authors
Simoes, M; Madureira, AG; Soares, F; Lopes, JP;

Publication
2023 IEEE BELGRADE POWERTECH

Abstract
Electric power systems are currently experiencing a profound change, as increasing amounts of Renewable Energy Sources (RESs) displace conventional forms of generation. This development has gone hand-in-hand with an increasing share of distributed power generation being connected directly to the Distribution Network (DN), and the widespread of other types of Distributed Energy Resources (DERs), such as Energy Storage Sytems (ESSs), Electric Vehicles (EVs), and active (flexible) consumers. As these trends are expected to continue, this will require a profound revision of the way Transmission System Operators (TSOs) and Distribution System Operators (DSOs) interact with each other to fully benefit from the growing flexibility that is available at the DN level. In this work we propose a new tool for the coordinated operational planning of transmission and distribution systems, considering the existence of shared resources that can be simultaneously used by TSO and DSOs for the optimal operation of their networks. The tool uses advanced distributed optimization techniques, namely the Alternating Direction Method of Multipliers (ADMM) in order to maintain data privacy of the several agents involved in the optimization problem, and keep the tractability of the problem. The proposed tool is applied to modified IEEE test systems, and the results obtained highlight the benefits of the proposed coordination mechanism to solve problems occurring simultaneously at the transmission and DN-levels.

2023

Evaluation of the economic, technical, and environmental impacts of multi-energy system frameworks in distribution networks

Authors
Coelho, A; Soares, F; Iria, J; Lopes, JP;

Publication
2023 IEEE BELGRADE POWERTECH

Abstract
This paper presents a general comparison between network-secure and network-free optimization frameworks to manage flexible multi-energy resources. Both frameworks were implemented in a test case that includes electricity, gas, and heat distribution networks. Several potential scenarios for the decarbonization of the multi-energy system were simulated. The economic, technical, and environmental impacts were compiled. The network-secure framework is highly recommended to avoid service disruptions due to network violations, but its implementation comes with a price - overall operational costs increase, sometimes substantially.

2023

Modeling demand flexibility impact on the long-term adequacy of generation systems

Authors
Alves, IM; Carvalho, LM; Lopes, JAP;

Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
This paper proposes a novel probabilistic model for quantifying the impact of demand flexibility (DF) on the long-term generation system adequacy via Sequential Monte Carlo Simulation (SMCS) method. Unlike load shedding, DF can be considered an important instrument to postpone bulk consumption from periods with limited reserves to periods with more generating capacity available, avoiding load shedding and increasing the integration of variable renewable generation, such as wind power. DF has been widely studied in terms of its contribution to the system's social welfare, resulting in numerous innovative approaches ranging from the flexibility modeling of individual electric loads to the definition of aggregation strategies for optimally deploying this lever in competitive markets. To add to the current state-of-the-art, a new model is proposed to quantify DF impact on the traditional reliability indices, such as the Loss of Load Expectation (LOLE) and the Expected Energy Not Supplied (EENS), enabling a new perspective for the DF value. Given the diverse mechanisms associated with DF of different consumer types, the model considers the uncertainties associated with the demand flexibility available in each hour of the year and with the rebound effect, i.e., the subsequent change of consumption patterns following a DF mobilization event. Case studies based on a configuration of the IEEE-RTS 79 test system with wind power demonstrate that the DF can substantially improve the reliability indices of the static and operational reserve while decreasing the curtailment of variable generation cause by unit scheduling priorities or by short-term generation/demand imbalances.

2023

The role of hydrogen electrolysers in frequency related ancillary services: A case study in the Iberian Peninsula up to 2040

Authors
Ribeiro, FJ; Lopes, JAP; Fernandes, FS; Soares, FJ; Madureira, AG;

Publication
SUSTAINABLE ENERGY GRIDS & NETWORKS

Abstract
This paper investigates the contribution of hydrogen electrolysers (HEs) for frequency related Ancillary Services (AS), namely Frequency Containment Reserve (FCR), Synthetic Inertia (SI) , Fast Frequency Response (FFR) in future operation scenarios in the Iberian Peninsula (IP) considering low system iner-tia. The proposed framework for analysis consists of a dynamic model developed in MATLAB/Simulink. Simulations show that an instantaneous inverter based resource (IBR) trip induced by a grid fault may lead to the occurrence of values of Rate of Change of Frequency (RoCoF) close to undesirable thresholds if the FCR is provided solely by the conventional generators. The obtained results illustrate that HEs can outperform conventional generators on the provision of FCR. Furthermore, the FCR is unable to unlock the full potential of fast responding HEs. This suggests the advantage of providing additional AS such as SI or FFR in critical periods. Simulations also show that the benefit of additional AS can be limited in specific conditions, especially depending on the evolution of HEs' ramping capabilities, but are still a relevant complement to other solutions designed to deal with low inertia in power systems such as synchronous compensators.& COPY; 2023 Elsevier Ltd. All rights reserved.

2023

Multi-Class Stability Analysis of the Grid-Forming Placement Problem

Authors
Fernandes, F; Lopes, JP; Moreira, C;

Publication
2023 IEEE BELGRADE POWERTECH

Abstract
This paper evidences the ability of a VSM-based grid-forming to mitigate stability problems of different classes, raising a special concern towards the importance of its location in systems with large converter-interfaced renewable energy systems. Within this context, a multi-class stability assessment, that pillars on the simulation of different nature disturbances and in the subsequent evaluation of a 4 index set, was performed. Such analysis was carried out on a modified version of the IEEE39 Test System, using DigSILENT Power Factory as the simulation engine.

2023

Assessing the Membership of Portugal and Spain in the FCR Cooperation: TSO Costs and VPP Revenues

Authors
Ribeiro, J; Pecas Lopes, A; Soares, J; Madureira, G;

Publication
2023 International Conference on Smart Energy Systems and Technologies, SEST 2023

Abstract
The Transmission System Operators (TSOs) from Portugal and Spain do not procure Frequency Containment Reserve (FCR) through market mechanisms. A Virtual Power Plant (VPP) aggregating sources such as wind and solar power and hydrogen electrolysers (HEs) would benefit from participation in this ancillary service market. The methodology proposed in this paper allows to quantify the costs of the participation of the Iberian TSOs in the FCR Cooperation as well as the revenues of a VPP that aggregates wind and solar power and HEs. Results are produced using real data from past market sessions. The Portuguese TSO would have paid roughly 10 M€ to participate in this market in 2022. Using data for the same country and year, a VPP (aggregating the HEs expected to be connected by 2025) would have revenues over 2 M€. © 2023 IEEE.

  • 33
  • 345