Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2022

Comparative Study of Discrete PI and PR Controller Implemented in SRG for Wind Energy Application: Theory and Experimentation

Authors
Touati, Z; Pereira, M; Araujo, RE; Khedher, A;

Publication
ELECTRONICS

Abstract
The Switched Reluctance Generator (SRG) has been widely studied for Wind Energy Conversion Systems (WECS). However, a major drawback of the SRG system adopting the conventional control is the slow response of the DC link voltage controller. In this paper, a Proportional Resonant (PR) control strategy is proposed to control the output voltage of the SRG system to improve the fast response. The SRG model has a high non-linearity, which makes the design of controllers a difficult task. For this reason, the important practical engineering aspect of this work is the role played by the SRG model linearization in testing the sensitivity of the PR controller performance to specific parameter changes. The characteristics of steady-state behaviors of the SRG-based WECS under different control approaches are simulated and compared. The controller is implemented on a digital signal processor (TMS320F28379D). The experimental results are carried out using a 250 W 8/6 SRG prototype to assess the performance of the proposed control compared with the traditional Proportional Integral (PI) control strategy. The experimental results show that the PR control enhances the steady-state performance of the SR power generation system in WECS. Compared to PI control, the rise and settling times are reduced by 45% and 43%, respectively, without an overshoot.

2022

Indoor location infrastructure for time management tools: a case study

Authors
Teixeira, A; Silva, H; Araujo, RE;

Publication
Proceedings - 2022 International Young Engineers Forum in Electrical and Computer Engineering, YEF-ECE 2022

Abstract
Indoor localization systems are an important topic in the field of manufacturing process. A computational infrastructure based on Bluetooth low energy technology with state estimators for filtering is used to localize employees in the shop floor. The researchers' motivation is two-folds: implement an indoor tracking system while promoting manage production time. In this paper, we discuss the first prototype of a localization system adapted to address these goals. Experimental results show that the system for our case study, achieves a localization accuracy of less than three meters. © 2022 IEEE.

2022

qTSL: A Multilayer Control Framework for Managing Capacity, Temperature, Stress, and Losses in Hybrid Balancing Systems

Authors
de Castro, R; Pereira, H; Araujo, RE; Barreras, JV; Pangborn, HC;

Publication
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Abstract
This work deals with the design and validation of a control strategy for hybrid balancing systems (HBSs), an emerging concept that joins battery equalization and hybridization with supercapacitors (SCs) in the same system. To control this system, we propose a two-layer model predictive control (MPC) framework. The first layer determines the optimal state-of-charge (SoC) reference for the SCs considering long load forecasts and simple pack-level battery models. The second MPC layer tracks this reference and performs charge and temperature equalization, employing more complex module-level battery models and short load forecasts. This division of control tasks into two layers, running at different time scales and model complexities, enables us to reduce computational effort with a small loss of control performance. Experimental validation in a small-scale laboratory prototype demonstrates the effectiveness of the proposed approach in reducing charge, temperature, and stress in the battery pack.

2022

Linear and nonlinear systems in continuous time: application to power converters

Authors
Silveira, AM; de Castro, R; Araújo, RE;

Publication
Encyclopedia of Electrical and Electronic Power Engineering: Volumes 1-3

Abstract
Modeling is a key step in the design of energy and control systems. It allows us to simulate and predict the behavior of electronics converters, even before constructing them. This is instrumental, for example, for sizing, component selection and preliminary validation of the converter's functionality. It also enables us to design model-based controllers for the converter and regulate the amount of transferred power, which can be done using simulation tools. This article introduces the main tools employed in the mathematical modeling of power converters, with a particular focus on linear approximations and average models. © 2023 Elsevier Inc. All rights reserved.

2022

Properties and control stability analysis of linear and nonlinear systems: applications to power converters

Authors
de Castro, R; Silveira, AM; Araújo, RE;

Publication
Encyclopedia of Electrical and Electronic Power Engineering: Volumes 1-3

Abstract
The goal of this article is to introduce the fundamental notions and concepts of stability analysis for linear and nonlinear systems in the context of electronic power conversion. Power electronic circuits have strong nonlinear behavior in their essence; often we need to linearize them to understand their properties and study their stability with the applied control laws. We present different concepts of stability (internal, input-output, Lyapunov-based), observability and controllability, as well as practical tests to check these properties. We then apply these tests in the context of a single power converter example, a DC/DC boost converter. © 2023 Elsevier Inc. All rights reserved.

2022

Core Loss Distribution in a Switched Reluctance Motor - Linear and Nonlinear Analysis

Authors
Melo, P; Araujo, RE;

Publication
2022 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC)

Abstract
Switched reluctance machines (SRM) are simple, robust and fault tolerant machines, usually operating under strong nonlinear characteristics. Hence, SRM modeling is a most demanding task, in particular core losses. Non-sinusoidal flux density waveforms in different stator and rotor core sections, in addition to lamination non-uniform distribution are challenging phenomena to be addressed. This is still an ongoing research field. The purpose of this paper is to develop a comparative analysis between a linear and non-linear simulation model for core loss distribution in a three-phase 6/4 SRM. Five different steady-state operation modes will be addressed.

  • 34
  • 316