Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2023

Simulation Analysis of an Interleaved Silicon Carbide (SiC) Full-Bridge Converter

Authors
Rasul, A; Baptista, J;

Publication
Proceedings - 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2023

Abstract
Silicon carbide (SiC) switching devices have an enormous influence on power electronic systems, entitled to extraordinary outcomes attained in low switching and conduction losses. The research work exploration is to develop and analyze the interleaved SiC full-bridge converter. It is subjected to analyze the performance of silicon carbide (SiC) module-based converter design which can offer a power of 42kW. Power conversion is done between DC/AC by using a standard 1200V single-phase SiC module from Semikron [1]. The SiC-MOSFETs are controlled by an adequate galvanically isolated gate driver circuit. Several gate drivers' functionalities are added in the converter design for optimized performance and safe operation. The features include split turn-on/turn-off outputs, desaturation and active miller-clamp. The DC-link capacitors are designed to cancel the input ripple current and stabilizing the source voltage. The interleaving (180° phase-shift between the legs) helps to reduce ripple currents both, in the input capacitor as well as at the output. At the output coupled inductors are providing suppression of transverse currents between the interleaved legs. The coupled inductors help to reduce the size of the filter in the case of DC-DC or DC-AC grid-tie inverters. © 2023 IEEE.

2023

Sizing of Urban Power Systems Based on Renewable Sources

Authors
Vidal, D; Pinto, T; Baptista, J;

Publication
Distributed Computing and Artificial Intelligence, Special Sessions I, 20th International Conference, Guimaraes, Portugal, 12-14 July 2023.

Abstract
In recent years, sustainable power supply has become a necessary asset for the daily survival and development of populations. The incentive to the use of renewable energies has been increasing worldwide. Solar energy, in particular, is widespreading fast in countries whose location allows to obtain excellent radiation conditions. In this work, autonomous photovoltaic (PV) systems are studied, having as main aim its application in the supply of urban loads. For this purpose, a PV system is designed to supply the decorative lighting of a monument. Particular emphasis is given to studying the behavior of the energy storage system. The achieved results demonstrate that the use of this type of systems is a very efficient solution for the municipalities to supply several urban loads such as fountains, traffic lights, decorative lighting, among others. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2023

Energy Flows Optimization in a Renewable Energy Community with Storage Systems Integration

Authors
Araújo, I; Cerveira, A; Baptista, J;

Publication
Renewable Energy and Power Quality Journal

Abstract
Currently, there is increasing implementation of renewable energy communities, where consumers and producers come together to form energy cooperatives. This growing trend has been accompanied by several studies aiming to optimize energy exchanges and sharing inside the community, always taking into account the most favorable tariff regimes for community members. This paper presents an analysis that, based on applying a linear programming model, optimizes energy transactions in a renewable energy community with the integration of storage systems. The results show the developed model's effectiveness, presenting substantial profits for the community.

2023

Offshore Wind Farm Layout Optimisation Considering Wake Effect and Power Losses

Authors
Baptista, J; Jesus, B; Cerveira, A; Pires, EJS;

Publication
SUSTAINABILITY

Abstract
The last two decades have witnessed a new paradigm in terms of electrical energy production. The production of electricity from renewable sources has come to play a leading role, thus allowing us not only to face the global increase in energy consumption, but also to achieve the objectives of decarbonising the economies of several countries. In this scenario, where onshore wind energy is practically exhausted, several countries are betting on constructing offshore wind farms. Since all the costs involved are higher when compared to onshore, optimising the efficiency of this type of infrastructure as much as possible is essential. The main aim of this paper was to develop an optimisation model to find the best wind turbine locations for offshore wind farms and to obtain the wind farm layout to maximise the profit, avoiding cable crossings, taking into account the wake effect and power losses. The ideal positioning of wind turbines is important for maximising the production of electrical energy. Furthermore, a techno-economic analysis was performed to calculate the main economic indicators, namely the net present value, the internal rate of return, and the payback period, to support the decision-making. The results showed that the developed model found the best solution that maximised the profits of the wind farm during its lifetime. It also showed that the location of the offshore substation played a key role in achieving these goals.

2023

A Quantitative PED Definition with Contextual Targets

Authors
Schneider, S; Zelger, T; Sengl, D; Baptista, J;

Publication

Abstract
This paper presents the goals and components of a quantitative energy balance assessment framework to define PEDs flexibly in three important contexts: the context of the district's density and RES potential, the context of a district's location, induced mobility and the context of the dis-trict's future environment and its decarbonized energy demand or supply. It starts by introducing the practical goals of this definition approach: achievable, yet sufficiently ambitious to be inline with Paris 2050 for most urban and rural Austrian district typologies. It goes on to identify the main design parts of the definition: system boundaries, balancing weights and balance targets and argue how they can be linked to the definition goals in detail. In particular we specify three levels of system boundaries and argue their individual necessity: operation, including everyday mobili-ty, including embodied energy and emissions. It argues that all three pillars of PEDs, energy effi-ciency, onsite renewables and energy flexibility can be assessed with the single metric of a prima-ry energy balance when using carefully designed, time-dependent conversion factors. Finally, it is discussed how balance targets can be interpreted as information and requirements from the sur-rounding energy system, which we identify as a "context factor". Three examples of such context factors, each corresponding to the balance target of one of the previously defined system bounda-ries operation, mobility and embodied emissions are presented: Density (as a context of opera-tion), sectoral energy balances and location (as a context for mobility) and an outlook of a person-al emission budgets (as a context for embodied emissions). Finally, the proposed definition framework is applied to seven distinct district typologies in Austria and discussed in terms of its design goals.

2023

The Impact of Active Power Electronics (V2G Charger) to a Represantitive Austrian Electrical Distribution Grid

Authors
Grasel, B; Baptista, J; Tragner, M;

Publication
2023 International Conference on Smart Energy Systems and Technologies (SEST)

Abstract

  • 35
  • 336