2023
Authors
Rasul, A; Baptista, J;
Publication
Proceedings - 2023 IEEE International Conference on Environment and Electrical Engineering and 2023 IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2023
Abstract
Silicon carbide (SiC) switching devices have an enormous influence on power electronic systems, entitled to extraordinary outcomes attained in low switching and conduction losses. The research work exploration is to develop and analyze the interleaved SiC full-bridge converter. It is subjected to analyze the performance of silicon carbide (SiC) module-based converter design which can offer a power of 42kW. Power conversion is done between DC/AC by using a standard 1200V single-phase SiC module from Semikron [1]. The SiC-MOSFETs are controlled by an adequate galvanically isolated gate driver circuit. Several gate drivers' functionalities are added in the converter design for optimized performance and safe operation. The features include split turn-on/turn-off outputs, desaturation and active miller-clamp. The DC-link capacitors are designed to cancel the input ripple current and stabilizing the source voltage. The interleaving (180° phase-shift between the legs) helps to reduce ripple currents both, in the input capacitor as well as at the output. At the output coupled inductors are providing suppression of transverse currents between the interleaved legs. The coupled inductors help to reduce the size of the filter in the case of DC-DC or DC-AC grid-tie inverters. © 2023 IEEE.
2023
Authors
Vidal, D; Pinto, T; Baptista, J;
Publication
Distributed Computing and Artificial Intelligence, Special Sessions I, 20th International Conference, Guimaraes, Portugal, 12-14 July 2023.
Abstract
In recent years, sustainable power supply has become a necessary asset for the daily survival and development of populations. The incentive to the use of renewable energies has been increasing worldwide. Solar energy, in particular, is widespreading fast in countries whose location allows to obtain excellent radiation conditions. In this work, autonomous photovoltaic (PV) systems are studied, having as main aim its application in the supply of urban loads. For this purpose, a PV system is designed to supply the decorative lighting of a monument. Particular emphasis is given to studying the behavior of the energy storage system. The achieved results demonstrate that the use of this type of systems is a very efficient solution for the municipalities to supply several urban loads such as fountains, traffic lights, decorative lighting, among others. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
2023
Authors
Araújo, I; Cerveira, A; Baptista, J;
Publication
Renewable Energy and Power Quality Journal
Abstract
2023
Authors
Baptista, J; Jesus, B; Cerveira, A; Pires, EJS;
Publication
SUSTAINABILITY
Abstract
The last two decades have witnessed a new paradigm in terms of electrical energy production. The production of electricity from renewable sources has come to play a leading role, thus allowing us not only to face the global increase in energy consumption, but also to achieve the objectives of decarbonising the economies of several countries. In this scenario, where onshore wind energy is practically exhausted, several countries are betting on constructing offshore wind farms. Since all the costs involved are higher when compared to onshore, optimising the efficiency of this type of infrastructure as much as possible is essential. The main aim of this paper was to develop an optimisation model to find the best wind turbine locations for offshore wind farms and to obtain the wind farm layout to maximise the profit, avoiding cable crossings, taking into account the wake effect and power losses. The ideal positioning of wind turbines is important for maximising the production of electrical energy. Furthermore, a techno-economic analysis was performed to calculate the main economic indicators, namely the net present value, the internal rate of return, and the payback period, to support the decision-making. The results showed that the developed model found the best solution that maximised the profits of the wind farm during its lifetime. It also showed that the location of the offshore substation played a key role in achieving these goals.
2023
Authors
Schneider, S; Zelger, T; Sengl, D; Baptista, J;
Publication
Abstract
2023
Authors
Grasel, B; Baptista, J; Tragner, M;
Publication
2023 International Conference on Smart Energy Systems and Technologies (SEST)
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.