Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2022

Local Energy Communities in Service of Sustainability and Grid Flexibility Provision: Hierarchical Management of Shared Energy Storage

Authors
Nagpal, H; Avramidis, I; Capitanescu, F; Madureira, AG;

Publication
IEEE Transactions on Sustainable Energy

Abstract

2022

A Novel TSO-DSO Ancillary Service Procurement Coordination Approach for Congestion Management

Authors
Alizadeh, MI; Usman, M; Capitanescu, F; Madureira, AG;

Publication
2022 IEEE Power & Energy Society General Meeting (PESGM)

Abstract

2022

Design and experimental tests of an Imbert type downdraft gasifier prototype and clean-up system for small-scale biomass-based power generation

Authors
Mendonça, M; Mantilla, V; Patela, J; Silva, V; Resende, F;

Publication
Renewable Energy and Environmental Sustainability

Abstract
This paper addresses the design, development and experimental tests of a prototype of fuel gas generation system based on biomass gasification for small-scale applications, around 5?kW. It comprises the small scale downdraft gasifier and the gas cleaning system aiming to clean-up the producer gas to be used in the upstream Internal Combustion Engine (ICE). The design of the downdraft gasifier prototype follows the methodologies that have been reported on the available literature. However, since these methodologies apply to gasifiers with larger rated powers, the adopted methodology is based on the extrapolation of the main parameters used for larger gasifiers design. For runing the ICE the producer gas requires to have a specific gas composition with an acceptable range of impurities. Therefore, a clean-up system was proposed following three stages: in first instance a hot gas clean-up using a cyclone designed to eliminate particles and compounds; then a heat exchanger was used for cooling the gas to condensate tars and water; finally a cold gas clean-up is performed by filtration using two filter steps: the first one using organic material (biomass) and the second one using a polypropylene cartridge filter. Experimental tests were performed using the developed imbert downdraft gasifier prototype, using pellets as feedstock. The preliminary results allow verifying several drawbacks that will difficult an effective integration of the developed prototype for small scale power generation applications based on ICE using low density feedstock.

2022

Reviewing Explanatory Methodologies of Electricity Markets: An Application to the Iberian Market

Authors
Fernandes, R; Soares, I;

Publication
ENERGIES

Abstract
In this paper, for the data set of the Iberian Electricity Market for the period 1 January 2015 to 30 June 2019, 19 different models are considered from econometrics, statistics, and artificial intelligence to explain how electricity markets work. This survey allows us to obtain a more complete, critical view of the most cited models. The machine learning models appear to be very good at selecting the best explanatory variables for the price. They provide an interesting insight into how much the price depends on each variable under a nonlinear perspective. Notwithstanding, it might be necessary to make the results understandable. Both the autoregressive models and the linear regression models can provide clear explanations for each explanatory variable, with special attention given to GARCHX and LASSO regression, which provide a cleaner linear result by removing variables that have a minimal linear impact.

2022

Review on the Energy Storage Technologies with the Focus on Multi-Energy Systems

Authors
Vahid-Ghavidel M.; Javadi S.; Gough M.; Javadi M.S.; Santos S.F.; Shafie-Khah M.; Catalão J.P.S.;

Publication
Technologies for Integrated Energy Systems and Networks

Abstract
Energy storage is an important element of an energy system. In the power system, energy storage can be defined as a component that can be employed to generate a form of energy or utilize previously stored energy at different locations or times when it is required. Energy storage can enhance the stability of the grid, increase the reliability and efficiency of integrated systems that include renewable energy resources, and can also reduce emissions. A diverse set of storage technologies are currently utilized for the energy storage systems (ESSs) in a varied set of projects. This chapter provides information about the current ESS projects around the world and emphasizes the leading countries that are developing the applications of ESSs. The main categories of ESSs are explained in this chapter as follows: electrochemical, electromechanical, electromagnetic, and thermal storage. Moreover, the energy storage technologies are utilized in power grids for various reasons such as electricity supply capacity, electric energy time-shifting, on-site power, electric supply reserve capacity, frequency regulation, voltage support, and electricity bill management. Additionally, by integrating the various energy forms and developing the concept of multi-energy systems, ESSs become a fundamental component for the efficient operation of multi-energy systems. The main role of ESSs in multi-energy systems is to compensate for the fluctuations in power output from renewable energy resources. Moreover, the performance of the multi-energy system increases when it got integrated with an ESS. In this chapter, the applied ESS technologies in the context of the multi-energy systems are presented and explained.

2022

Preserving Privacy of Smart Meter Data in a Smart Grid Environment

Authors
Gough, MB; Santos, SF; AlSkaif, T; Javadi, MS; Castro, R; Catalao, JPS;

Publication
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Abstract
The use of data from residential smart meters can help in the management and control of distribution grids. This provides significant benefits to electricity retailers as well as distribution system operators but raises important questions related to the privacy of consumers' information. In this article, an innovative differential privacy (DP) compliant algorithm is developed to ensure that the data from consumer's smart meters are protected. The effects of this novel algorithm on the operation of the distribution grid are thoroughly investigated not only from a consumer's electricity bill point of view but also from a power systems point of view. This method allows for an empirical investigation into the losses, power quality issues, and extra costs that such a privacy-preserving mechanism may introduce to the system. In addition, severalcost allocation mechanisms based on the cooperative game theory are used to ensure that the extra costs are divided among the participants in a fair, efficient, and equitable manner. Overall, the comprehensive results show that the approach provides privacy preservation in line with the consumer's preferences and does not lead to significant cost or loss increases for the energy retailer. In addition, the novel algorithm is computationally efficient and performs very well with a large number of consumers, thus demonstrating its scalability.

  • 41
  • 316