Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by BIO

2019

Literature on Wearable Technology for Connected Health: Scoping Review of Research Trends, Advances, and Barriers

Authors
Loncar Turukalo, T; Zdravevski, E; da Silva, JM; Chouvarda, I; Trajkovik, V;

Publication
JOURNAL OF MEDICAL INTERNET RESEARCH

Abstract
Background: Wearable sensing and information and communication technologies are key enablers driving the transformation of health care delivery toward a new model of connected health (CH) care. The advances in wearable technologies in the last decade are evidenced in a plethora of original articles, patent documentation, and focused systematic reviews. Although technological innovations continuously respond to emerging challenges and technology availability further supports the evolution of CH solutions, the widespread adoption of wearables remains hindered. Objective: This study aimed to scope the scientific literature in the field of pervasive wearable health monitoring in the time interval from January 2010 to February 2019 with respect to four important pillars: technology, safety and security, prescriptive insight, and user-related concerns. The purpose of this study was multifold: identification of (1) trends and milestones that have driven research in wearable technology in the last decade, (2) concerns and barriers from technology and user perspective, and (3) trends in the research literature addressing these issues. Methods: This study followed the scoping review methodology to identify and process the available literature. As the scope surpasses the possibilities of manual search, we relied on the natural language processing tool kit to ensure an efficient and exhaustive search of the literature corpus in three large digital libraries: Institute of Electrical and Electronics Engineers, PubMed, and Springer. The search was based on the keywords and properties to be found in articles using the search engines of the digital libraries. Results: The annual number of publications in all segments of research on wearable technology shows an increasing trend from 2010 to February 2019. The technology-related topics dominated in the number of contributions, followed by research on information delivery, safety, and security, whereas user-related concerns were the topic least addressed. The literature corpus evidences milestones in sensor technology (miniaturization and placement), communication architectures and fifth generation (5G) cellular network technology, data analytics, and evolution of cloud and edge computing architectures. The research lag in battery technology makes energy efficiency a relevant consideration in the design of both sensors and network architectures with computational offloading. The most addressed user-related concerns were (technology) acceptance and privacy, whereas research gaps indicate that more efforts should be invested into formalizing clear use cases with timely and valuable feedback and prescriptive recommendations. Conclusions: This study confirms that applications of wearable technology in the CH domain are becoming mature and established as a scientific domain The current research should bring progress to sustainable delivery of valuable recommendations, enforcement of privacy by design, energy-efficient pervasive sensing, seamless monitoring, and low-latency 5G communications. To complement technology achievements, future work involving all stakeholders providing research evidence on improved care pathways and cost-effectiveness of the CH model is needed.

2019

Measuring optical properties of human liver between 400 and 1000 nm

Authors
Carneiro, I; Carvalho, S; Henrique, R; Oliveira, L; Tuchin, VV;

Publication
QUANTUM ELECTRONICS

Abstract
Laser diagnostics and treatment procedures are commonly performed for visible and near-IR wavelengths. The knowledge of the wavelength dependences for the optical properties of various biological tissues in this spectral range is useful for clinical applications. Since the optical properties of human liver have been previously known only for near-IR wavelengths, the aim is to estimate their wavelength dependences between 400 and 1000 nm. Using spectral measurements from liver samples in this range, we determine their optical properties with the inverse adding-doubling method. The obtained results indicate the presence of bile, oxyhaemoglobin and deoxyhaemoglobin in human liver. The combination of these biological components results in strong absorption for wavelengths between 400 and 600 nm, with peaks at unusual wavelengths. For wavelengths above 600 nm, the wavelength dependences for all optical properties present the typical behavior, but strong and shifted absorption observed for wavelengths below 600 nm has been previously unknown and can be useful for clinical procedures with lasers working in this range.

2019

The Optical Clearing Method

Authors
Oliveira, LMC; Tuchin, VV;

Publication
SpringerBriefs in Physics

Abstract

2019

Moving tissue spectral window to the deep-ultraviolet via optical clearing

Authors
Carneiro, I; Carvalho, S; Henrique, R; Oliveira, L; Tuchin, V;

Publication
JOURNAL OF BIOPHOTONICS

Abstract
The optical immersion clearing technique has been successfully applied through the last 30 years in the visible to near infrared spectral range, and has proven to be a promising method to promote the application of optical technologies in clinical practice. To investigate its potential in the ultraviolet range, collimated transmittance spectra from 200 to 1000 nm were measured from colorectal muscle samples under treatment with glycerol-water solutions. The treatments created two new optical windows with transmittance efficiency peaks at 230 and 300 nm, with magnitude increasing with glycerol concentration in the treating solution. Such discovery opens the opportunity to develop clinical procedures to perform diagnosis or treatments in the ultraviolet.

2019

A robust ex vivo method to evaluate the diffusion properties of agents in biological tissues

Authors
Carneiro, I; Carvalho, S; Henrique, R; Oliveira, LM; Tuchin, VV;

Publication
JOURNAL OF BIOPHOTONICS

Abstract
A robust method is presented for evaluating the diffusion properties of chemicals in ex vivo biological tissues. Using this method that relies only on thickness and collimated transmittance measurements, the diffusion properties of glycerol, fructose, polypropylene glycol and water in muscle tissues were evaluated. Amongst other results, the diffusion coefficient of glycerol in colorectal muscle was estimated with a value of 3.3 x 10(-7) cm(2)/s. Due to the robustness and simplicity of the method, it can be used in other fields of biomedical engineering, namely in organ cryoprotection and food industry.

2019

Kinetics of Optical Properties of Colorectal Muscle During Optical Clearing

Authors
Carneiro, I; Carvalho, S; Henrique, R; Oliveira, L; Tuchin, VV;

Publication
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS

Abstract
In this paper, we describe a simple and indirect method to evaluate the kinetics of the optical properties for biological tissues under optical clearing treatments. We use the theoretical formalism in this method to process experimental data obtained from colorectal muscle samples to evaluate and characterize the dehydration and refractive index matching mechanisms.

  • 46
  • 113