Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2021

Estimation of the Global Amount of Mandatory Investments for Distribution Network Expansion Planning

Authors
Macedo, PM; Fidalgo, JN; Saraiva, JT;

Publication
2021 IEEE MADRID POWERTECH

Abstract
The financial planning of distribution systems usually includes the prediction of annual mandatory investments, concerning the resources that the DSO is compelled to allocate as a result of new network connections, required by new consumers or new energy producers. This paper presents a methodology to estimate the mandatory investments that the DSO should do in the distribution network. These estimations are based on historical data, load growth expectations and various socioeconomic indices. However, the available database contains very few annual investment examples (one aggregated value per year since 2002) compared to the large number of variables (potential inputs), which is a factor of regression overfitting. Thus, the applicable regression techniques are restrained to simple but efficient models. This paper describes a new methodology to identify the most suitable estimation models. The implemented application automatically builds, selects, and tests estimation models resulting from combinations of input variables. The final forecast is provided by a committee of models. Results obtained so far confirm the feasibility of the adopted methodology.

2021

Impact of Electric Vehicles in Three-Phase Distribution Grids

Authors
Prakash, P; Tavares, BC; Prata, R; Fidalgo, N; Moreira, C; Soares, F;

Publication
IET Conference Proceedings

Abstract
Recent advances in electric vehicle (EV) charging capability have seen a wide growth in the consumer market, which will continue to increase in future years with favourable policy incentives. However, the uncontrolled connection and charging of EV may have an adverse effect on three-phase distribution grids operation. This paper presents the impact of EV integration in a real LV Portuguese urban network. It analyses the network loading, energy losses, and voltage imbalances, under different scenarios of EV charging location and phase connection. The DIgSILENT Power Factory software is used in the voltage imbalance studies. Preliminary results show that the voltage drop in the analysed network is significantly affected by the location of the EV. Furthermore, as expected, the unbalanced EV loading leads to an increase of voltage unbalance between phases which is more pronounced when higher levels of EV are considered. © 2021 The Institution of Engineering and Technology.

2021

Forecasting Energy Technology Diffusion in Space and Time: Model Design, Parameter Choice and Calibration

Authors
Heymann, F; vom Scheidt, F; Soares, FJ; Duenas, P; Miranda, V;

Publication
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY

Abstract
New energy technologies such as Distributed Energy Resources (DER) will affect the spatial and temporal patterns of electricity consumption. Models that mimic technology diffusion processes over time are fundamental to support decisions in power system planning and policymaking. This paper shows that spatiotemporal technology diffusion forecasts consist typically of three main modules: 1) a global technology diffusion forecast, 2) the cellular module that is a spatial data substrate with cell states and transition rules, and 3) a spatial mapping module, commonly based on Geographic Information Systems. This work provides a review of previous spatiotemporal DER diffusion models and details their common building blocks. Analyzing 16 model variants of an exemplary spatial simulation model used to predict electric vehicle adoption patterns in Portugal, the analysis suggests that model performance is strongly affected by careful tuning of spatial and temporal granularities and chosen inference techniques. In general, model validation remains challenging, as early diffusion stages have typically few observations for model calibration.

2021

Simulating spatiotemporal energy technology adoption patterns under different policy designs

Authors
Heymann, F; Duenas, P; Soares, FJ; Miranda, V; Rudisuli, M;

Publication
2021 IEEE MADRID POWERTECH

Abstract
Recent studies found that the adoption of distributed energy resources (DER) tends to cluster spatially and temporally which has significant implications for distribution network planning. Currently, residential DER adoption is mostly driven by public support schemes, also called incentive designs. Therefore, changes in those incentive designs will result in alternative spatiotemporal DER adoption patterns that affect distribution networks differently. Consequently, distribution network operators urgently need to understand the effects of energy policy changes on the spatial distribution of DER to guide network expansion based on realistic scenarios. The presented work and tool allow network operators to plan network expansion with robustness under future incentive design changes.

2021

An improved version of the Continuous Newton's method for efficiently solving the Power-Flow in Ill-conditioned systems

Authors
Tostado Veliz, M; Matos, MA; Lopes, JAP; Jurado, F;

Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
This paper tackles the efficient Power-Flow solution of ill-conditioned cases. In that sense, those methods based on the Continuous Newton's philosophy look very promising, however, these methodologies still present some issues mainly related with the computational efficiency or the robustness properties. In order to overcome these drawbacks, we suggest several modifications about the standard structure of the Continuous Newton's method. Thus, the standard Continuous Newton's paradigm is firstly modified with a frozen Jacobian scheme for reducing its computational burden; secondly, it is extended for being used with High-order Newton-like method for achieving higher convergence rate and, finally, a regularization scheme is introduced for improving its robustness features. On the basis of the suggested improvements, a Power-Flow solution paradigm is developed. As example, a novel Power-Flow solver based on the introduced solution framework and the 4th order Runge-Kutta formula is developed. The novel technique is validated in several realistic large-scale ill-conditioned systems. Results show that the suggested modifications allow to overcome the drawbacks presented by those methodologies based on the Continuous Newton's method. On the light of the results obtained it can be also claimed, that the developed solution paradigm constitutes a promising framework for developing robust and efficient Power-Flow solution techniques.

2021

Operational Management of Medium Voltage and Low Voltage Networks under a Smart Grid Environment

Authors
Teixeira, H; Lopes, JAP; Matos, MA;

Publication
2021 IEEE MADRID POWERTECH

Abstract
Electrification of society and economy is crucial to fight against climate changes assuming simultaneously a large-scale integration of electricity generation exploiting Renewable Energy Sources (RES). The increasing presence of RES and Electric Vehicles (EV) in Low Voltage (LV) networks, and the emergence of the Smart Grid paradigm will require relevant changes in the operational management of both LV and Medium Voltage (MV) networks. In this paper, two different strategies (separated and coordinated management) for the operational management of MV and LV networks are compared regarding their ability to integrate large amounts of RES and to accept increased electrification of consumption, including EV. Each management strategy is modeled through optimization problems, being then applied to an electrical distribution system consisting of MV and LV networks. Results show that a coordinated operational management outperforms the separated strategy, by allowing the integration of much higher volumes of RES and EV.

  • 50
  • 319