Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CPES

2019

Trading Small Prosumers Flexibility in the Energy and Tertiary Reserve Markets

Authors
Iria, JP; Soares, FJ; Matos, MA;

Publication
IEEE TRANSACTIONS ON SMART GRID

Abstract
This paper addresses the participation of an aggregator of small prosumersin the energy and tertiary reserve markets. A two-stage stochastic optimization model is proposed to exploit the load and generation flexibility of the prosumers. The aim is to define energy and tertiary reserve bids to minimize the net cost of the aggregator buying and selling energy in the day-ahead and real-time markets, as well as to maximize the revenue of selling tertiary reserve during the real-time stage. Scenario-based stochastic programming is used to deal with the uncertainties of photovoltaic power generation, electricity demand, outdoor temperature, end-users' behavior, and preferences. A case study of 1000 small prosumers from MIBEL is used to compare the proposed strategy to two other strategies. The numerical results show that the proposed strategy reduces the bidding net cost of the aggregator by 48% when compared to an inflexible strategy typically used by retailers.

2019

Optimal bidding strategy for an aggregator of prosumers in energy and secondary reserve markets

Authors
Iria, J; Soares, F; Matos, M;

Publication
APPLIED ENERGY

Abstract
This paper proposes a two-stage stochastic optimization model to support an aggregator of prosumers in the definition of bids for the day-ahead energy and secondary reserve markets. The aggregator optimizes the prosumers' flexibility with the objective of minimizing the net cost of buying and selling energy and secondary reserve in both day-ahead and real-time market stages. The uncertainties of the renewable generation, consumption, outdoor temperature, prosumers' preferences, and house occupancy are modeled through a set of scenarios. For a case study of 1000 prosumers, the results show that the proposed bidding strategy reduces the costs of both aggregator and prosumers by 40% compared to a bidding strategy typically used by retailers.

2019

Handling Renewable Energy Variability and Uncertainty in Power System Operation

Authors
Bessa, R; Moreira, C; Silva, B; Matos, M;

Publication
Advances in Energy Systems

Abstract

2019

State-of-the-art of transmission expansion planning: A survey from restructuring to renewable and distributed electricity markets

Authors
Gomes, PV; Saraiva, JT;

Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
Transmission Expansion Planning (TEP) problem aims at identifying when and where new equipment as transmission lines, cables and transformers should be inserted on the grid. The transmission upgrade capacity is motivated by several factors as meeting the increasing electricity demand, increasing the reliability of the system and providing non-discriminatory access to cheap generation for consumers. However, TEP problems have been changing over the years as the electrical system evolves. In this way, this paper provides a detailed historical analysis of the evolution of the TEP over the years and the prospects for this challenging task. Furthermore, this study presents an outline review of more than 140 recent articles about TEP problems, literature insights and identified gaps as a critical thinking in how new tools and approaches on TEP can contribute for the new era of renewable and distributed electricity markets.

2019

Impact of decision-making models in Transmission Expansion Planning considering large shares of renewable energy sources

Authors
Gomes, PV; Saraiva, JT; Carvalho, L; Dias, B; Oliveira, LW;

Publication
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
Transmission Expansion Planning (TEP) is traditionally carried out based on long-term forecasts for the peak load, which is viewed as the worst-case scenario. However, with the increasing renewable penetration, the peak load may not be longer the only worst-case to quantify new investment requirements. In fact, high off-peak load scenarios combined with low renewable generation can originate unforeseen bottlenecks. Besides, as TEP is a time-consuming problem, relaxed decision-making processes are often proposed in the literature to address the problem, however there is no guarantee that optimal planning has been achieved when some costs in the decision-making process are neglected. In this sense, this paper proposes a novel methodological framework to ensure that the system is sufficiently robust to overcome conditions with high electricity demand and low renewable energy, furthermore, this paper also presents a broad comparison between the common decision making processes adopted in the TEP literature aiming at providing a more insightful understanding of its impact on the total system cost. The optimization model, which is based on a multi-stage planning strategy, considers an AC-OPF model to enforce operational constrains, including the N-1 contingency criterion. The proposed model is tested through an evolutionary algorithm on a large test system with 118 bus. The uncertainties inherent to wind-solar-hydrothermal systems, demand and the life cycle of generation and transmission equipment are duly considered in the simulations. The results demonstrate the effectiveness of the proposed methodology in providing solution plans able to meet the demand even in scenarios with high off-peak load and low renewable generation, unlike the planning carried out considering only the peak load. Besides, the results also demonstrate that relaxed decision-making models may generate insufficient expansion plans.

2019

On the Use of Causality Inference in Designing Tariffs to Implement More Effective Behavioral Demand Response Programs

Authors
Ganesan, K; Saraiva, JT; Bessa, RJ;

Publication
ENERGIES

Abstract
Providing a price tariff that matches the randomized behavior of residential consumers is one of the major barriers to demand response (DR) implementation. The current trend of DR products provided by aggregators or retailers are not consumer-specific, which poses additional barriers for the engagement of consumers in these programs. In order to address this issue, this paper describes a methodology based on causality inference between DR tariffs and observed residential electricity consumption to estimate consumers' consumption elasticity. It determines the flexibility of each client under the considered DR program and identifies whether the tariffs offered by the DR program affect the consumers' usual consumption or not. The aim of this approach is to aid aggregators and retailers to better tune DR offers to consumer needs and so to enlarge the response rate to their DR programs. We identify a set of critical clients who actively participate in DR events along with the most responsive and least responsive clients for the considered DR program. We find that the percentage of DR consumers who actively participate seem to be much less than expected by retailers, indicating that not all consumers' elasticity is effectively utilized.

  • 93
  • 316