Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRACS

2005

Probabilistic first-order theory revision from examples

Authors
Paes, A; Revoredo, K; Zaverucha, G; Costa, VS;

Publication
Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science)

Abstract
Recently, there has been significant work in the integration of probabilistic reasoning with first order logic representations. Learning algorithms for these models have been developed and they all considered modifications in the entire structure. In a previous work we argued that when the theory is approximately correct the use of techniques from theory revision to just modify the structure in places that failed in classification can be a more adequate choice. To score these modifications and choose the best one the log likelihood was used. However, this function was shown not to be well-suited in the propositional Bayesian classification task and instead the conditional log likelihood should be used. In the present paper, we extend this revision system showing the necessity of using specialization operators even when there are no negative examples. Moreover, the results of a theory modified only in places that are responsible for the misclassification of some examples are compared with the one that was modified in the entire structure using three databases and considering four probabilistic score functions, including conditional log likelihood. © Springer-Verlag Berlin Heidelberg 2005.

2005

ReGS: User-level reliability in a grid environment

Authors
Sanches, JAL; Vargas, PK; De Dutra, IC; Costa, VS; Geyer, CFR;

Publication
2005 IEEE International Symposium on Cluster Computing and the Grid, CCGrid 2005

Abstract
Grid environments are ideal for executing applications that require a huge amount of computational work, both due to the big number of tasks to execute and to the large amount of data to be analysed. Unfortunately, current tools may require that users deal themselves with corrupted outputs or early termination of tasks. This becomes incovenient as the number of parallel runs grows to easily exceed the thousands. ReCS is a user-level software designed to provide automatic detection and restart of corrupted or early terminated tasks. ReGS uses a web interface to allow the setup and control of grid execution, and provides automatic input data setup. ReGS allows the automatic detection of job dependencies, through the GRID-ADL task management language. Our results show that besides automatically and effectively managing a huge number of tasks in grid environments, ReGS is also a good monitoring tool to spot grid nodes pitfalls. © 2005 IEEE.

2005

Mode directed path finding

Authors
Ong, IM; De Castro Dutra, I; Page, D; Costa, VS;

Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
Learning from multi-relational domains has gained increasing attention over the past few years. Inductive logic programming (ILP) systems, which often rely on hill-climbing heuristics in learning first-order concepts, have been a dominating force in the area of multi-relational concept learning. However, hill-climbing heuristics are susceptible to local maxima and plateaus. In this paper, we show how we can exploit the links between objects in multi-relational data to help a first-order rule learning system direct the search by explicitly traversing these links to find paths between variables of interest. Our contributions are twofold: (i) we extend the pathfinding algorithm by Richards and Mooney [12] to make use of mode declarations, which specify the mode of call (input or output) for predicate variables, and (ii) we apply our extended path finding algorithm to saturated bottom clauses, which anchor one end of the search space, allowing us to make use of background knowledge used to build the saturated clause to further direct search. Experimental results on a medium-sized dataset show that path finding allows one to consider interesting clauses that would not easily be found by Aleph. © Springer-Verlag Berlin Heidelberg 2005.

2005

An integrated approach to learning Bayesian networks of rules

Authors
Davis, J; Burnside, E; De Castro Dutra, I; Page, D; Santos Costa, V;

Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
Inductive Logic Programming (ILP) is a popular approach for learning rules for classification tasks. An important question is how to combine the individual rules to obtain a useful classifier. In some instances, converting each learned rule into a binary feature for a Bayes net learner improves the accuracy compared to the standard decision list approach [3,4,14]. This results in a two-step process, where rules are generated in the first phase, and the classifier is learned in the second phase. We propose an algorithm that interleaves the two steps, by incrementally building a Bayes net during rule learning. Each candidate rule is introduced into the network, and scored by whether it improves the performance of the classifier. We call the algorithm SAYU for Score As You Use. We evaluate two structure learning algorithms Naïve Bayes and Tree Augmented Naïve Bayes. We test SAYU on four different datasets and see a significant improvement in two out of the four applications. Furthermore, the theories that SAYU learns tend to consist of far fewer rules than the theories in the two-step approach. © Springer-Verlag Berlin Heidelberg 2005.

2005

View learning for statistical relational learning: With an application to mammography

Authors
Davis, J; Burnside, E; Dutra, I; Page, D; Ramakrishnan, R; Costa, VS; Shavlik, J;

Publication
IJCAI International Joint Conference on Artificial Intelligence

Abstract
Statistical relational learning (SRL) constructs probabilistic models from relational databases. A key capability of SRL is the learning of arcs (in the Bayes net sense) connecting entries in different rows of a relational table, or in different tables. Nevertheless, SRL approaches currently are constrained to use the existing database schema. For many database applications, users find it profitable to define alternative "views" of the database, in effect defining new fields or tables. Such new fields or tables can also be highly useful in learning. We provide SRL with the capability of learning new views.

2005

An experimental evaluation of JAVA JIT technology

Authors
Faustino Da Silva, A; Costa, VS;

Publication
Journal of Universal Computer Science

Abstract
Interpreted languages are widely used due to ease to use, portability, and safety. On the other hand, interpretation imposes a significance overhead. Just-in-Time (JIT) compilation is a popular approach to improving the runtime performance of languages such as Java. We compare the performance of a JIT compiler with a traditional compiler and with an emulator. We show that the compilation overhead from using JIT is negligible, and that the JIT compiler achieves better overall performance, suggesting the case for aggresive compilation in JIT compilers. © J. UCS.

  • 173
  • 192