2023
Authors
Fernandes, P; Antunes, M;
Publication
FORENSIC SCIENCE INTERNATIONAL-DIGITAL INVESTIGATION
Abstract
Tampered digital multimedia content has been increasingly used in a wide set of cyberattacks, chal-lenging criminal investigations and law enforcement authorities. The motivations are immense and range from the attempt to manipulate public opinion by disseminating fake news to digital kidnapping and ransomware, to mention a few cybercrimes that use this medium as a means of propagation.Digital forensics has recently incorporated a set of computational learning-based tools to automatically detect manipulations in digital multimedia content. Despite the promising results attained by machine learning and deep learning methods, these techniques require demanding computational resources and make digital forensic analysis and investigation expensive. Applied statistics techniques have also been applied to automatically detect anomalies and manipulations in digital multimedia content by statisti-cally analysing the patterns and features. These techniques are computationally faster and have been applied isolated or as a member of a classifier committee to boost the overall artefact classification.This paper describes a statistical model based on Benford's Law and the results obtained with a dataset of 18000 photos, being 9000 authentic and the remaining manipulated.Benford's Law dates from the 18th century and has been successfully adopted in digital forensics, namely in fraud detection. In the present investigation, Benford's law was applied to a set of features (colours, textures) extracted from digital images. After extracting the first digits, the frequency with which they occurred in the set of values obtained from that extraction was calculated. This process allowed focusing the investigation on the behaviour with which the frequency of each digit occurred in comparison with the frequency expected by Benford's law.The method proposed in this paper for applying Benford's Law uses Pearson's and Spearman's corre-lations and Cramer-Von Mises (CVM) fitting model, applied to the first digit of a number consisting of several digits, obtained by extracting digital photos features through Fast Fourier Transform (FFT) method.The overall results obtained, although not exceeding those attained by machine learning approaches, namely Support Vector Machines (SVM) and Convolutional Neural Networks (CNN), are promising, reaching an average F1-score of 90.47% when using Pearson correlation. With non-parametric approaches, namely Spearman correlation and CVM fitting model, an F1-Score of 56.55% and 76.61% were obtained respec-tively. Furthermore, the Pearson's model showed the highest homogeneity compared to the Spearman's and CVM models in detecting manipulated images, 8526, and authentic ones, 7662, due to the strong correlation between the frequencies of each digit and the frequency expected by Benford's law.The results were obtained with different feature sets length, ranging from 3000 features to the totality of the features available in the digital image. However, the investigation focused on extracting 1000 features since it was concluded that increasing the features did not imply an improvement in the results.The results obtained with the model based on Benford's Law compete with those obtained from the models based on CNN and SVM, generating confidence regarding its application as decision support in a criminal investigation for the identification of manipulated images.& COPY; 2023 Elsevier Ltd. All rights reserved.
2023
Authors
Carreiro, A; Silva, C; Antunes, M;
Publication
CENTERIS 2023 - International Conference on ENTERprise Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems and Technologies 2023, Porto, Portugal, November 8-10, 2023.
Abstract
Cybersecurity has a major impact on the healthcare sector, mainly due to the sensitive data and vital medical devices that, when an attack occurs, may compromise the life, safety, and well-being of the patients. However, those institutions fail on implementing correct system protection policies and providing adequate programs for cybersecurity training and raising cybersecurity awareness. Healthcare professionals develop their academic courses focusing on providing the best care for the patients, studying guidelines, treatment protocols, and diagnostic criteria. However, there are insufficient subjects dedicated to the development of digital literacy to match the requisites of the daily challenges of those professionals, with human error being the main cause of data breaches worldwide. So, developing training programs to face the cybersecurity day-to-day threats is mandatory. Broadly speaking, traditional training programs seem to fail on retaining students' motivation, engagement, and long-term knowledge acquisition, being time-consuming and challenging in scheduling and planning. To face this situation, new techniques, such as gamification, have emerged, with promising results on motivation and engagement, allowing the users to be the center of the training programs, matching the strategy to their levels of knowledge and preferences. This paper aims to identify the existing gamified approaches available, review the state-of-the-art related to gamification and cybersecurity training, and elaborates on how they can be successfully applied to training programs for healthcare professionals. © 2024 Elsevier B.V.. All rights reserved.
2023
Authors
Barbosa, A; Ribeiro, P; Dutra, I;
Publication
COMPLEX NETWORKS AND THEIR APPLICATIONS XI, COMPLEX NETWORKS 2022, VOL 2
Abstract
Association Football is probably the world's most popular sport. Being able to characterise and compare football players is therefore a very important and impactful task. In this work we introduce spatial flow motifs as an extension of previous work on this problem, by incorporating both temporal and spatial information into the network analysis of football data. Our approach considers passing sequences and the role of the player in those sequences, complemented with the physical position of the field where the passes occurred. We provide experimental results of our proposed methodology on real-life event data from the Italian League, showing we can more accurately identify players when compared to using purely topological data.
2023
Authors
Tome, ES; Ribeiro, RP; Dutra, I; Rodrigues, A;
Publication
SENSORS
Abstract
The early detection of fire is of utmost importance since it is related to devastating threats regarding human lives and economic losses. Unfortunately, fire alarm sensory systems are known to be prone to failures and frequent false alarms, putting people and buildings at risk. In this sense, it is essential to guarantee smoke detectors' correct functioning. Traditionally, these systems have been subject to periodic maintenance plans, which do not consider the state of the fire alarm sensors and are, therefore, sometimes carried out not when necessary but according to a predefined conservative schedule. Intending to contribute to designing a predictive maintenance plan, we propose an online data-driven anomaly detection of smoke sensors that model the behaviour of these systems over time and detect abnormal patterns that can indicate a potential failure. Our approach was applied to data collected from independent fire alarm sensory systems installed with four customers, from which about three years of data are available. For one of the customers, the obtained results were promising, with a precision score of 1 with no false positives for 3 out of 4 possible faults. Analysis of the remaining customers' results highlighted possible reasons and potential improvements to address this problem better. These findings can provide valuable insights for future research in this area.
2023
Authors
Kirkpatrick, CR; Coakley, KL; Christopher, J; Dutra, I;
Publication
Data Sci. J.
Abstract
Seven years after the seminal paper on FAIR was published, that introduced the concept of making research outputs Findable, Accessible, Interoperable, and Reusable, researchers still struggle to understand how to implement the principles. For many researchers, FAIR promises long-term benefits for near-term effort, requires skills not yet acquired, and is one more thing in a long list of unfunded mandates and onerous requirements for scientists. Even for those required to, or who are convinced that they must make time for FAIR research practices, their preference is for just-in-time advice properly sized to the scientific artifacts and process. Because of the generality of most FAIR implementation guidance, it is difficult for a researcher to adjust to the advice according to their situation. Technological advances, especially in the area of artificial intelligence (AI) and machine learning (ML), complicate FAIR adoption, as researchers and data stewards ponder how to make software, workflows, and models FAIR and reproducible. The FAIR+ Implementation Survey Tool (FAIRIST) mitigates the problem by integrating research requirements with research proposals in a systematic way. FAIRIST factors in new scholarly outputs, such as nanopublications and notebooks, and the various research artifacts related to AI research (data, models, workflows, and benchmarks). Researchers step through a self-serve survey process and receive a table ready for use in their data management plan (DMP) and/or work plan. while gaining awareness of the FAIR Principles and Open Science concepts. FAIRIST is a model that uses part of the proposal process as a way to do outreach, raise awareness of FAIR dimensions and considerations, while providing timely assistance for competitive proposals. © 2023, Ubiquity Press. All rights reserved.
2023
Authors
Pinto, M; Dutra, I; Fonseca, J;
Publication
CoRR
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.