2020
Authors
Coelho, A; Soares, F; Lopes, JP;
Publication
ENERGIES
Abstract
With the growing concern about decreasing CO
2020
Authors
Gouveia, J; Gouveia, C; Rodrigues, J; Carvalho, L; Moreira, CL; Lopes, JAP;
Publication
ELECTRIC POWER SYSTEMS RESEARCH
Abstract
The integration of distributed Battery Energy Storage Systems (BESS) at the Medium Voltage (MV) and Low Voltage (LV) networks increases the distribution grid flexibility to deal with high penetration of Renewable Energy Sources (RES). In addition, it also enables the deployment of key self-healing functionalities, which allow the islanded operation of small sections of the distribution network. However, new planning and real-time operation strategies are required to allow the BESS coordinated control, as well as a cost-effective and stable operation. This paper presents new tools developed for the planning and real-time operation of distribution networks integrating BESS, particularly when operating islanding. For real-time operation, a short-term emergency operation-planning tool assesses the feasibility of islanded operation of a small section of the distribution network. The long-term impact of a BESS control strategy for islanded operation is assessed through a Life Cycle Analysis (LCA) tool. The results and implementation experience in real distribution network are also discussed.
2020
Authors
De Oliveira, AR; Collado, JV; Lopes, JAP; Saraiva, JPT; Fonseca, NS; Domenech, S; Campos, FA;
Publication
International Conference on the European Energy Market, EEM
Abstract
The European Union (EU) energy strategy towards decarbonization led EU countries to elaborate their corresponding National Energy and Climate Plans (NECP) for the period 2021 to 2030. This paper analyzes the Portuguese and Spanish NECPs concerning their power systems. CEVESA, a model for the long-term planning and operation of the Iberian electricity system, is used. The analysis is based on simulating the reference NECP scenario, as well as other alternative scenarios with different solar and wind generation shares, CO2 prices and fuel costs. Results provide insights on the MIBEL electricity market evolution under the current decarbonization national strategies. © 2020 IEEE.
2020
Authors
Rodrigues, J; Moreira, C; Lopes, JP;
Publication
ELECTRIC POWER SYSTEMS RESEARCH
Abstract
This paper presents two innovative Fault-Ride-Through (FRT) strategies suited for Smart-Transformers (ST) supplying hybrid AC/DC distribution grids within a microgrid environment. The first strategy is suited for ST without a local energy storage, where its Medium Voltage (MV) inverter is operated in grid-tied mode. The proposed approach relies on the voltage sensitivity of resources connected to the ST fed distribution networks aiming to limit the MV inverter current. The second strategy is suited for ST incorporating local energy storage and operating its MV inverter in grid-forming mode, thus enabling islanding operation of a MV grid section. The proposed FRT strategy aims to regulate ST's output voltage by calculating the maximum voltage drop in the coupling filter in order to control the output current. The proposed strategies are evaluated exploiting appropriated simulation models and extensive operating conditions.
2021
Authors
Tostado Veliz, M; Matos, MA; Lopes, JAP; Jurado, F;
Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
Abstract
This paper tackles the efficient Power-Flow solution of ill-conditioned cases. In that sense, those methods based on the Continuous Newton's philosophy look very promising, however, these methodologies still present some issues mainly related with the computational efficiency or the robustness properties. In order to overcome these drawbacks, we suggest several modifications about the standard structure of the Continuous Newton's method. Thus, the standard Continuous Newton's paradigm is firstly modified with a frozen Jacobian scheme for reducing its computational burden; secondly, it is extended for being used with High-order Newton-like method for achieving higher convergence rate and, finally, a regularization scheme is introduced for improving its robustness features. On the basis of the suggested improvements, a Power-Flow solution paradigm is developed. As example, a novel Power-Flow solver based on the introduced solution framework and the 4th order Runge-Kutta formula is developed. The novel technique is validated in several realistic large-scale ill-conditioned systems. Results show that the suggested modifications allow to overcome the drawbacks presented by those methodologies based on the Continuous Newton's method. On the light of the results obtained it can be also claimed, that the developed solution paradigm constitutes a promising framework for developing robust and efficient Power-Flow solution techniques.
2021
Authors
Gouveia, J; Moreira, CL; Lopes, JAP;
Publication
APPLIED SCIENCES-BASEL
Abstract
The operation of isolated power systems with 100% converter-based generation requires the integration of battery energy storage systems (BESS) using grid-forming-type power converters. Under these operating conditions, load dynamics influences the network frequency and voltage following large voltage disturbances. In this sense, the inclusion of induction motor (IM) load models is required to be properly considered in BESS power converter sizing. Thus, this paper presents an extensive sensitivity analysis, demonstrating how load modeling affects the BESS power converter capacity when adopting conventional control strategies while aiming to assure the successful recovery of all IM loads following a network fault. Furthermore, this work highlights that generators with converter interfaces can actively contribute to mitigate the negative impacts resulting from IM loads following a network fault. Thereby, two distinct control strategies are proposed to be integrated in the power electronic interfaces of the available converter-based generators: one to be adopted in grid-following converters and another one suitable for grid-forming converters. The proposed control strategies provide an important contribution to consolidating insular grid codes, aiming to achieve operational scenarios accommodating 100% penetration of converter-based generation with a significative percentage of the IM load composition without resorting to a significative increase in BESS power converter sizing.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.