Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Ricardo Jorge Bessa

2020

The future of forecasting for renewable energy

Authors
Sweeney, C; Bessa, RJ; Browell, J; Pinson, P;

Publication
WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT

Abstract
Forecasting for wind and solar renewable energy is becoming more important as the amount of energy generated from these sources increases. Forecast skill is improving, but so too is the way forecasts are being used. In this paper, we present a brief overview of the state-of-the-art of forecasting wind and solar energy. We describe approaches in statistical and physical modeling for time scales from minutes to days ahead, for both deterministic and probabilistic forecasting. Our focus changes then to consider the future of forecasting for renewable energy. We discuss recent advances which show potential for great improvement in forecast skill. Beyond the forecast itself, we consider new products which will be required to aid decision making subject to risk constraints. Future forecast products will need to include probabilistic information, but deliver it in a way tailored to the end user and their specific decision making problems. Businesses operating in this sector may see a change in business models as more people compete in this space, with different combinations of skills, data and modeling being required for different products. The transaction of data itself may change with the adoption of blockchain technology, which could allow providers and end users to interact in a trusted, yet decentralized way. Finally, we discuss new industry requirements and challenges for scenarios with high amounts of renewable energy. New forecasting products have the potential to model the impact of renewables on the power system, and aid dispatch tools in guaranteeing system security. This article is categorized under: Energy Infrastructure > Systems and Infrastructure Wind Power > Systems and Infrastructure Photovoltaics > Systems and Infrastructure

2020

Extreme Quantiles Dynamic Line Rating Forecasts and Application on Network Operation

Authors
Dupin, R; Cavalcante, L; Bessa, RJ; Kariniotakis, G; Michiorri, A;

Publication
ENERGIES

Abstract
This paper presents a study on dynamic line rating (DLR) forecasting procedure aimed at developing a new methodology able to forecast future ampacity values for rare and extreme events. This is motivated by the belief that to apply DLR network operators must be able to forecast their values and this must be based on conservative approaches able to guarantee the safe operation of the network. The proposed methodology can be summarised as follows: firstly, probabilistic forecasts of conductors' ampacity are calculated with a non-parametric model, secondly, the lower part of the distribution is replaced with a new distribution calculated with a parametric model. The paper presents also an evaluation of the proposed methodology in network operation, suggesting an application method and highlighting the advantages. The proposed forecasting methodology delivers a high improvement of the lowest quantiles' reliability, allowing perfect reliability for the 1% quantile and a reduction of roughly 75% in overconfidence for the 0.1% quantile.

2020

Reactive power provision by the DSO to the TSO considering renewable energy sources uncertainty

Authors
Soares, T; Carvalho, L; Moris, H; Bessa, RJ; Abreu, T; Lambert, E;

Publication
SUSTAINABLE ENERGY GRIDS & NETWORKS

Abstract
The current coordination between the transmission system operator (TSO) and the distribution system operator (DSO) is changing mainly due to the continuous integration of distributed energy resources (DER) in the distribution system. The DER technologies are able to provide reactive power services helping the DSOs and TSOs in the network operation. This paper follows this trend by proposing a methodology for the reactive power management by the DSO under renewable energy sources (RES) forecast uncertainty, allowing the DSO to coordinate and supply reactive power services to the TSO. The proposed methodology entails the use of a stochastic AC-OPF, ensuring reliable solutions for the DSO. RES forecast uncertainty is modeled by a set of probabilistic spatiotemporal trajectories. A 37-bus distribution grid considering realistic generation and consumption data is used to validate the proposed methodology. An important conclusion is that the methodology allows the DSO to leverage the DER full capabilities to provide a new service to the TSO.

2020

Simulating Tariff Impact in Electrical Energy Consumption Profiles With Conditional Variational Autoencoders

Authors
Bregere, M; Bessa, RJ;

Publication
IEEE ACCESS

Abstract
The implementation of efficient demand response (DR) programs for household electricity consumption would benefit from data-driven methods capable of simulating the impact of different tariffs schemes. This paper proposes a novel method based on conditional variational autoencoders (CVAE) to generate, from an electricity tariff profile combined with weather and calendar variables, daily consumption profiles of consumers segmented in different clusters. First, a large set of consumers is gathered into clusters according to their consumption behavior and price-responsiveness. The clustering method is based on a causality model that measures the effect of a specific tariff on the consumption level. Then, daily electrical energy consumption profiles are generated for each cluster with CVAE. This non-parametric approach is compared to a semi-parametric data generator based on generalized additive models. Experiments in a publicly available data set show that, the proposed method presents comparable performance to the semi-parametric one when it comes to generating the average value of the original data (13% difference in root mean square error). The main contribution from this new method is the capacity to reproduce rebound and side effects in the generated consumption profiles. Indeed, the application of a special electricity tariff over a time window may also affect consumption outside this time window. Another contribution is that the proposed clustering approach is capturing the reaction to a tariff change. When compared to a clustering method with classical features (min, max and average consumption), the improvement in the Calinski-Harabasz index was 128% for consumers associated with tariff changes.

2020

Big data analytics for future electricity grids

Authors
Kezunovic, M; Pinson, P; Obradovic, Z; Grijalva, S; Hong, T; Bessa, R;

Publication
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
This paper provides a survey of big data analytics applications and associated implementation issues. The emphasis is placed on applications that are novel and have demonstrated value to the industry, as illustrated using field data and practical applications. The paper reflects on the lessons learned from initial implementations, as well as ideas that are yet to be explored. The various data science trends treated in the literature are outlined, while experiences from applying them in the electricity grid setting are emphasized to pave the way for future applications. The paper ends with opportunities and challenges, as well as implementation goals and strategies for achieving impactful outcomes.

2020

Architecture model for a holistic and interoperable digital energy management platform

Authors
Senna, PP; Almeida, AH; Barros, AC; Bessa, RJ; Azevedo, AL;

Publication
Procedia Manufacturing

Abstract
The modern digital era is characterized by a plethora of emerging technologies, methodologies and techniques that are employed in the manufacturing industries with intent to improve productivity, to optimize processes and to reduce operational costs. Yet, algorithms and methodological approaches for improvement of energy consumption and environmental impact are not integrated with the current operational and planning tools used by manufacturing companies. One possible reason for this is the difficulty in bridging the gap between the most advanced energy related ICT tools, developed within the scope of the industry 4.0 era, and the legacy systems that support most manufacturing operational and planning processes. Consequently, this paper proposes a conceptual architecture model for a digital energy management platform, which is comprised of an IIoT-based platform, strongly supported by energy digital twin for interoperability and integrated with AI-based energy data-driven services. This conceptual architecture model enables companies to analyse their energy consumption behaviour, which allows for the understanding of the synergies among the variables that affect the energy demand, and to integrate this energy intelligence with their legacy systems in order to achieve a more sustainable energy demand. © 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) Peer-review under responsibility of the scientific committee of the FAIM 2021.

  • 13
  • 26