Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Ricardo Jorge Bessa

2022

Maximizing Green Hydrogen Production with Power Flow Tracing

Authors
Dudkina, E; Villar, J; Bessa, RJ;

Publication
International Conference on the European Energy Market, EEM

Abstract
Decarbonization of energy systems is one of the main tracks in the energy sector, and in this transition, green hydrogen assumes an important role. Considering the variability of renewable energy sources (RES), the flexibility of the hydrogen production could help dealing with imbalances. However, to truly contribute to a greener energy mix, a principle of additivity must be obeyed. In other words, to produce green hydrogen, the energy supplied to the electrolyzers must be renewable and must not entail a decrease in the RES consumed by other loads according to the energy strategic plans. This study integrates power flow tracing (PFT) technique within an optimal power flow (OPF) to determine and maximize the physical flow between the energy from RES generators and the electrolyzer through the existing grid. The proposed method was tested on both radial and meshed IEEE test grids. Simulation results showed that the electrolyzer green supply can be increased by controlling the dispatch of the distributed generators (e.g., CHP) according to the location of the electrolyzer. In addition, installing storage systems nearby load buses allows increasing the amount of green supply by using the RES-based electricity stored. © 2022 IEEE.

2022

ML-Assistant for human operators to solve faults and classify events complexity in electrical grids

Authors
Campos, V; Andrad, JR; Bessa, RJ; Gouveia, C;

Publication
13th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2022)

Abstract

2024

Uncertainty-Aware Procurement of Flexibilities for Electrical Grid Operational Planning

Authors
Bessa, RJ; Moaidi, F; Viana, J; Andrade, JR;

Publication
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY

Abstract
In the power system decarbonization roadmap, novel grid management tools and market mechanisms are fundamental to solving technical problems concerning renewable energy forecast uncertainty. This work proposes a predictive algorithm for procurement of grid flexibility by the system operator (SO), which combines the SO flexible assets with active and reactive power short-term flexibility markets. The goal is to reduce the cognitive load of the human operator when analyzing multiple flexibility options and trajectories for the forecasted load/RES and create a human-in-the-loop approach for balancing risk, stakes, and cost. This work also formulates the decision problem into several steps where the operator must decide to book flexibility now or wait for the next forecast update (time-to-decide method), considering that flexibility (availability) price may increase with a lower notification time. Numerical results obtained for a public MV grid (Oberrhein) show that the time-to-decide method improves up to 22% a performance indicator related to a cost-loss matrix, compared to the option of booking the flexibility now at a lower price and without waiting for a forecast update.

2023

Data-driven Assessment of the DER Flexibility Impact on the LV Grid Management

Authors
Fritz, B; Sampaio, G; Bessa, RJ;

Publication
2023 IEEE BELGRADE POWERTECH

Abstract
Low voltage (LV) grids face a challenge of effectively managing the growing presence of new loads like electric vehicles and heat pumps, along with the equally growing installation of rooftop photovoltaic panels. This paper describes practical applications of sensitivity factors, extracted from smart meter data (i.e., without resorting to grid models), to i) link voltage problems to different costumers/devices and their location in the grid, ii) manage the flexibility provided by distributed energy resources (DERs) to regulate voltage, and iii) assess favorable locations for DER capacity extensions, all with the aim of supporting the decision-making process of distribution system operators (DSOs) and the design of incentives for customers to invest in DERs. The methods are tested by running simulations based on historical meter data on six grid models provided by the EU-Joint Research Center. The results prove that it is feasible to implement advanced LV grid analysis and management tools despite the typical limitations in its electrical and topological characterisation, while avoiding the use of computationally heavy tools such as optimal power flows.

2023

PV Inverter Fault Classification using Machine Learning and Clarke Transformation

Authors
Costa, L; Silva, A; Bessa, RJ; Araújo, RE;

Publication
2023 IEEE BELGRADE POWERTECH

Abstract
In a photovoltaic power plant (PVPP), the DC-AC converter (inverter) is one of the components most prone to faults. Even though they are key equipment in such installations, their fault detection techniques are not as much explored as PV module-related issues, for instance. In that sense, this paper is motivated to find novel tools for detection focused on the inverter, employing machine learning (ML) algorithms trained using a hybrid dataset. The hybrid dataset is composed of real and synthetic data for fault-free and faulty conditions. A dataset is built based on fault-free data from the PVPP and faulty data generated by a digital twin (DT). The combination DT and ML is employed using a Clarke/space vector representation of the inverter electrical variables, thus resulting in a novel feature engineering method to extract the most relevant features that can properly represent the operating condition of the PVPP. The solution that was developed can classify multiple operation conditions of the inverter with high accuracy.

2012

Methodologies to Determine Operating Reserves Due to Increased Wind Power

Authors
Holttinen, H; Milligan, M; Ela, E; Menemenlis, N; Dobschinski, J; Rawn, B; Bessa, RJ; Flynn, D; Gomez Lazaro, E; Detlefsen, NK;

Publication
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY

Abstract
Power systems with high wind penetration experience increased variability and uncertainty, such that determination of the required additional operating reserve is attracting a significant amount of attention and research. This paper presents methods used in recent wind integration analyses and operating practice, with key results that compare different methods or data. Wind integration analysis over the past several years has shown that wind variability need not be seen as a contingency event. The impact of wind will be seen in the reserves for nonevent operation ( normal operation dealing with deviations from schedules). Wind power will also result in some events of larger variability and large forecast errors that could be categorized as slow events. The level of operating reserve that is induced by wind is not constant during all hours of the year, so that dynamic allocation of reserves will reduce the amount of reserves needed in the system for most hours. The paper concludes with recent emerging trends.

  • 18
  • 25