2019
Authors
Bessa, RJ; Rua, D; Abreu, C; Machado, P; Andrade, JR; Pinto, R; Gonçalves, C; Reis, M;
Publication
CoRR
Abstract
2020
Authors
Giebel, G; Shaw, W; Frank, H; Pinson, P; Draxl, C; Zack, J; Möhrlen, C; Kariniotakis, G; Bessa, R;
Publication
Abstract
2020
Authors
Kariniotakis, G; Camal, S; Bessa, R; Pinson, P; Giebel, G; Libois, Q; Legrand, R; Lange, M; Wilbert, S; Nouri, B; Neto, A; Verzijlbergh, R; Sauba, G; Sideratos, G; Korka, E; Petit, S;
Publication
Abstract
2023
Authors
Couto, R; Faria, J; Oliveira, J; Sampaio, G; Bessa, R; Rodrigues, F; Santos, R;
Publication
IET Conference Proceedings
Abstract
This paper presents a novel solution integrated into the Eneida DeepGrid® platform for real-time voltage and active power estimation in low voltage grids. The tool utilizes smart grid infrastructure data, including historical data, real-time measurements from a subset of meters, and exogenous information such as weather forecasts and dynamic price signals. Unlike traditional methods, the solution does not require electrical or topological characterization and is not affected by observability issues. The performance of the tool was evaluated through a case study using 10 real networks located in Portugal, with results showing high estimation accuracy, even under scenarios of low smart meter coverage. © The Institution of Engineering and Technology 2023.
2024
Authors
Silva, CA; Vilaça, R; Pereira, A; Bessa, RJ;
Publication
RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Abstract
High-performance computing relies on performance-oriented infrastructures with access to powerful computing resources to complete tasks that contribute to solve complex problems in society. The intensive use of resources and the increase in service demand due to emerging fields of science, combined with the exascale paradigm, climate change concerns, and rising energy costs, ultimately means that the decarbonization of these centers is key to improve their environmental and financial performance. Therefore, a review on the main opportunities and challenges for the decarbonization of high-performance computing centers is essential to help decision-makers, operators and users contribute to a more sustainable computing ecosystem. It was found that state-of-the-art supercomputers are growing in computing power, but are combining different measures to meet sustainability concerns, namely going beyond energy efficiency measures and evolving simultaneously in terms of energy and information technology infrastructure. It was also shown that policy and multiple entities are now targeting specifically HPC, and that identifying synergies with the energy sector can reveal new revenue streams, but also enable a smoother integration of these centers in energy systems. Computing-intensive users can continue to pursue their scientific research, but participating more actively in the decarbonization process, in cooperation with computing service providers. Overall, many opportunities, but also challenges, were identified, to decrease carbon emissions in a sector mostly concerned with improving hardware performance.
2023
Authors
Heymann, F; Parginos, K; Bessa, RJ; Galus, M;
Publication
ENERGY REPORTS
Abstract
Artificial intelligence (AI) brings great potential but also risks to the electricity industry. Following the EU's current regulatory proposal, the EU Regulation for Artificial Intelligence (AI Act), there will be direct, potentially adverse effects on companies of the electricity industry in Europe and beyond, as well as those active in the development of AI systems. In this paper, we develop a replicable framework for estimating compliance costs for different electricity market agents that will need to comply with the numerous requirements the AI Act imposes. The electricity systems of Austria, Greece and Switzerland are used as case-studies. We estimate annual, aggregated costs for electricity market agents ranging from less than one million to almost 200 million Euros per country, depending on compliance costs scenarios. Results suggest that a profit growth of 10% through AI utilization is needed to offset the highest added compliance cost of the AI Act on electricity market agents. Eventually, we further show how to assess the regional differences of these costs added to system operation, providing spatially disaggregated compliance costs estimates that consider the structural differences of the electricity industry within 26 Swiss cantons.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.