Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRAS

2013

Ocean Observation With Coordinated Robotic Platforms Coordination Algorithms Maintain Vehicle Formation

Authors
Cruz, NA; Ferreira, BM; Matos, AC;

Publication
SEA TECHNOLOGY

Abstract
The MARES is a small, torpedo-shaped AUV 1.5 meters long and 32 kilograms in weight in the basic version. In a typical configuration, a PC/104 computational system manages the entire mission, including communications with other devices and a control station. Navigation is provided by the fusion of data from an inertial measurement unit (IMU) and an acoustic system for long baseline localization (LBL), complemented by a small GPS receiver, when the vehicle is at the surface. Four thrusters provide the capability to move as fast as 5 knots and to hover in the water column, with a set of lithium-ion batteries ensuring 10 hours of operation. MARES is a highly modular vehicle, with the ability to integrate a great variety of payload sensors, and it has been operating since 2007, mainly in environmental- monitoring missions. The capability of vehicles to follow a given trajectory and maintain reliable data exchange is among the most relevant topics when it comes to coordination of marine robots.

2013

Spline Navigation and Reactive Collision Avoidance with COLREGs for ASVs

Authors
Pinto, M; Ferreira, B; Sobreira, H; Matos, A; Cruz, N;

Publication
2013 OCEANS - SAN DIEGO

Abstract
This paper describes the implementation of a navigation algorithm for Autonomous Surface Vehicles (ASVs), that is composed by two stages: 1) spline curve follower and; 2) reactive collision avoidance, obeying to the International Regulations for Preventing Collisions at Sea (COLREGs). The spline curve follower determines path's parametric functions that the vehicle should follow, taking into account : 1) the initial and goal points on the fixed world frame and; 2) the final desired orientation for the ASV. The reactive collision avoidance substitutes the splines navigation in situations of potential collision with moving obstacles. To do this, the algorithm considers the relative velocity between the controlled ASV and the moving obstacle (other ASV). It also takes into account the escape trajectory that the controlled ASV is capable to perform at each instant. The algorithm was implemented under the Robotic Operating System (ROS) framework. An intuitive spline curve configuration tool, using the RVIZ's package. The paper presents results of the simulation of two ASVs, following predefined spline trajectories, and the reactive collision avoidance routine in a rendezvous situation. A reference for a video illustrating the navigation algorithm is also provided.

2013

Optimal positioning of autonomous marine vehicles for underwater acoustic source localization using TOA measurements

Authors
Ferreira, B; Matos, A; Cruz, N;

Publication
2013 IEEE INTERNATIONAL UNDERWATER TECHNOLOGY SYMPOSIUM (UT)

Abstract
In opposition to the surface, no common solution is available for localization of active objects underwater. Typical solutions use acoustics as a means to implicitly measure ranges or angles and consequently determine the position of a transmitter. If the receivers are synchronized among themselves, the position of the transmitter can be estimated based on the time-of-arrivals (TOA). The confidence on the estimate varies with respect to the relative positions of the receivers and the transmitter. In this paper, we present recent developments for optimal 3D positioning of TOA sensors based on the a metric that uses the Fisher information matrix. We give the necessary conditions to obtain the best possible estimate. To our best knowledge, no analytical solution has been yet presented for this problem. We complete and validate our study with a simulation of optimal positioning of four TOA sensors.

2013

Fast 3D Map Matching Localisation Algorithm

Authors
Pinto, M; Moreira, AP; Matos, A; Sobreira, H; Santos, F;

Publication
Journal of Automation and Control Engineering - JOACE

Abstract

2013

Field experiments for marine casualty detection with autonomous surface vehicles

Authors
Martins, A; Dias, A; Almeida, J; Ferreira, H; Almeida, C; Amaral, G; Machado, D; Sousa, J; Pereira, P; Matos, A; Lobo, V; Silva, E;

Publication
2013 OCEANS - SAN DIEGO

Abstract
In this paper we present a set of field tests for detection of human in the water with an unmanned surface vehicle using infrared and color cameras. These experiments aimed to contribute in the development of victim target tracking and obstacle avoidance for unmanned surface vehicles operating in marine search and rescue missions. This research is integrated in the work conducted in the European FP7 research project Icarus aiming to develop robotic tools for large scale rescue operations. The tests consisted in the use of the ROAZ unmanned surface vehicle equipped with a precision GPS system for localization and both visible spectrum and IR cameras to detect the target. In the experimental setup, the test human target was deployed in the water wearing a life vest and a diver suit (thus having lower temperature signature in the body except hands and head) and was equipped with a GPS logger. Multiple target approaches were performed in order to test the system with different sun incidence relative angles. The experimental setup, detection method and preliminary results from the field trials performed in the summer of 2013 in Sesimbra, Portugal and in La Spezia, Italy are also presented in this work.

2013

On the use of Particle Filters for Terrain Based Navigation of sensor-limited AUVs

Authors
Melo, J; Matos, A;

Publication
2013 MTS/IEEE OCEANS - BERGEN

Abstract
Different Terrain Based Navigation systems for underwater vehicles have already been presented, with experimentally validated results and consistent performance. However, these results are mostly based on the use of both high accuracy inertial navigation systems and high quality sonars. This article presents a study on Particle Filter algorithms that cope with peculiarities of Terrain Based Navigation for sensor limited systems. The focus is on the influence on several parameters, namely the process noise, the measurement noise and the number of the particles, and how these can improve the obtained results. Based on the results obtained by simulation, we present some conclusions relevant for the design of future implementation of the algorithms.

  • 109
  • 167