Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRAS

2023

Non-parametric Gaussian process kernel DMD and LS-SVM predictors revisited A unifying approach

Authors
dos Santos, PL; Azevedo-Perdicoulis, TP; Salgado, PA;

Publication
IFAC PAPERSONLINE

Abstract
In this work, the prediction of a time series is formulated as a gaussian process regression, for different levels of noise. The gaussian regressor is translated into lower rank Dynamic Mode Decomposition methods that use kernels (K-DMD) - Kernel regression and Least Squares Support Vector Machines. The presented unified approach delivers an algorithm where the optimisation of the marginal likelihood function can be used to find the parameters of the kernel regression. The viability of the procedure is demonstrated on a chaotic series, with quite good adjustment results being obtained. Copyright (c) 2023 The Authors.

2023

Environmental Impact Assessment of the Subsurface in a Former W-Sn Mine: Integration of Geophysical Methodologies

Authors
De Almeida, H; Marques, MCG; Sant'Ovaia, H; Moura, R; Marques, JE;

Publication
MINERALS

Abstract
Associated with the exploitation of metallic minerals in Europe during the 20th century, several mining areas were abandoned without adequate environmental intervention. Furthermore, these areas lack studies to characterize the impact of pollution on the hydrogeological system. The area surrounding the tungsten mine of Regoufe, in northern Portugal, is one such area exploited during the Second World War. The accumulation of sulfide-rich tailings may have caused an acid mine drainage (AMD), where the leaching processes caused by seepage water led to soil contamination, evidenced by its acid character and anomalous concentrations of some Potentially Toxic Elements (PTE) reported in previous studies. The present research proposes an innovative approach that seeks the integration of different geophysical techniques to characterize the impact of mining activity on the subsurface. Electrical resistivity (ER) and electromagnetic (EM) were used to measure subsurface electrical properties. In addition, seismic refraction and Multichannel Analysis of Surface Waves (MASW) were performed to characterize the geometry, depth, and geomechanical behavior of the soil and rock bodies. The integration of these techniques allowed the interpretation of hydrogeological sections and a 3D resistivity volume to gain insight into the distribution of potentially contaminating fluids and tailings material present in the mining valley.

2023

Drilling Parameters in the Evaluation of Rock Mass Quality

Authors
Pereira, M; Fernandes, I; Moura, R; Plasencia, N;

Publication
Advances in Science, Technology and Innovation

Abstract

2023

The INOVMineral Project's Contribution to Mineral Exploration-A WebGIS Integration and Visualization of Spectral and Geophysical Properties of the Aldeia LCT Pegmatite Spodumene Deposit

Authors
Cardoso Fernandes, J; Santos, D; de Almeida, CR; Vasques, JT; Mendes, A; Ribeiro, R; Azzalini, A; Duarte, L; Moura, R; Lima, A; Teodoro, AC;

Publication
MINERALS

Abstract
Due to the current energetic transition, new geological exploration technologies are needed to discover mineral deposits containing critical materials such as lithium (Li). The vast majority of European Li deposits are related to Li-Cs-Ta (LCT) pegmatites. A review of the literature indicates that conventional exploration campaigns are dominated by geochemical surveys and related exploration tools. However, other exploration techniques must be evaluated, namely, remote sensing (RS) and geophysics. This work presents the results of the INOVMINERAL4.0 project obtained through alternative approaches to traditional geochemistry that were gathered and integrated into a webGIS application. The specific objectives were to: (i) assess the potential of high-resolution elevation data; (ii) evaluate geophysical methods, particularly radiometry; (iii) establish a methodology for spectral data acquisition and build a spectral library; (iv) compare obtained spectra with Landsat 9 data for pegmatite identification; and (v) implement a user-friendly webGIS platform for data integration and visualization. Radiometric data acquisition using geophysical techniques effectively discriminated pegmatites from host rocks. The developed spectral library provides valuable insights for space-based exploration. Landsat 9 data accurately identified known LCT pegmatite targets compared with Landsat 8. The user-friendly webGIS platform facilitates data integration, visualization, and sharing, supporting potential users in similar exploration approaches.

2023

Marine Sensors: Recent Advances and Challenges

Authors
Gontalves, L; Martins, MS; Lima, RA; Minas, G;

Publication
SENSORS

Abstract
The ocean has a huge impact on our way of life; therefore, there is a need to monitor and protect its biodiversity [...].

2023

On the evaluation of strain energy release rate of cement-bone bonded joints under mode II loading

Authors
Campos, TD; Barbosa, MLS; Martins, M; Pereira, FAM; de Moura, MFSF; Nguyen, Q; Zille, A; Dourado, N;

Publication
THEORETICAL AND APPLIED FRACTURE MECHANICS

Abstract
Bone cements based on poly(methylmethacrylate) (PMMA) are primarily used in joint replacement surgeries. In the fixation of joint replacement, the self-curing cement fills constitutes a very important interface. To under-stand and improve the interaction between cortical bone and bone cement it is essential to characterize the mechanical properties of cement-bone bonded joints in full detail. In this study, the end-notched flexure test was used in the context of pure mode II fracture characterisation of cement-bone bonded joints. A data reduction scheme based on crack equivalent concept was employed to overcome the difficulties inherent to crack length monitoring during damage propagation. A finite element method combined with a cohesive zone model was first used to validate numerically the adopted method. The procedure was subsequently applied to experimental results to determine the fracture toughness of cement-bone bonded joints under pure mode II loading. The consistency of the obtained results leads to the conclusion that the adopted procedure is adequate to carry out fracture characterisation of these joints under pure mode II loading. The innovative aspect of the present work lies in the application of cohesive zone modelling approach to PMMA-based cement-bone bonded joints.

  • 12
  • 167