2023
Authors
Monteiro, FB; Pereira, EB; Almeida, J; Cruz, F; Barajas, D; Zille, A; Martins, MS; Miranda, T;
Publication
OCEANS 2023 - LIMERICK
Abstract
Implementing Artificial Reefs (AR) is seen as a worldwide strategy to overcome the problematic environmental impacts due to climate change, overfishing and other activities that damage natural habitats and ecosystems. The production and deployment of ARs involve a series of technical challenges and this work explores a possible alternative solution to overcome some of these challenges. This work addresses a new system for building underwater modular structures integrating monitoring sensors, exploring the potential that Flat Knitted textiles have when specifically designed and used as Knitted Textile Preforms (KTPs) for concrete filling. The casting of AR modules directly in their final position, underwater, brings new paradigms to the design and production of ARs clusters with more complex geometries and geometrical continuity between modules. This manuscript is dedicated to the analysis of variables such as injection pressure and its variations during filling and curing, respectively, as well as the textile structure and geometrical design. It also addresses the possibilities of the technology to embed environmental sensors, which will add functions to the AR structure.
2023
Authors
Matos, T; Martins, M; Moutinho, A; Henriques, CD; Silva, D; Pacheco, J; Oliveira, S; Faria, C; Rocha, J; Gonçalves, L; Viveiros, F; Fialho, P; Henriques, D; Neto, R;
Publication
OCEANS 2023 - LIMERICK
Abstract
The oceans are abundant in natural diversity, minerals and energy resources, and there is an urgent need for a better understanding of its ecosystems and dynamics. The Synchronous Oceanic and Atmospheric Data Acquisition (SONDA) Project intends to contribute to better atmospheric and oceanic modelling and monitoring by launching High-Altitude Balloons (HAB) equipped with atmospheric and deep-sea probes to be released in oceanic areas of interest. This work reports the development and validation of three different probes: 1) atmospheric monitoring with APRS communications to be launched by HAB; 2) oceanographic monitoring; and 3) deep-sea monitoring with satellite communications. All probes were preliminarily tested in a semi-controlled fluvial environment, and posteriorly in real field conditions in the Azores Islands, Portugal. During the campaign, the Atmospheric probe was launched by HAB and its communications were tested with fixed and mobile ground stations, the oceanographic probe was deployed for three days to monitor the effect of a geothermal spring in the sea and the deep-sea probe was released into the Atlantic Ocean.
2023
Authors
Gonzalez Losada, P; Martins, M; Vinayakumar, KB;
Publication
IEEE SENSORS JOURNAL
Abstract
Advancement and opportunity in the Internet of Things (IoT) and circular economy are pushing the technologies required to develop eco-friendly memory devices, computing devices, advanced sensors, and actuators. In this manuscript, a thermally cycled lithium niobate pyroelectric crystal is used to store the surface charges in different dielectric samples (Kapton, Parafilm, and Teflon). Charge storing parameters, such as the effect of temperature ramp, the gap between the dielectric-to-pyroelectric, and the effect of charging cycles, were studied to understand the surface charge formation on dielectric samples. Pyroelectrically charged dielectrics showed a surface potential of up to 400 V, with a linear dependence on the thermal gradient of the pyroelectric crystal. The charged surface showed good charge storage uniformity and stability at high temperatures (90 degrees C) and relative humidity (>85%). Using the pyroelectrically charged dielectrics, wearable motion sensors offering output signals in the range of tens of millivolts and a digital flexible invisible memory encoding with polarity switched (positive and negative charges) electrostatic bits are demonstrated.
2023
Authors
Rocha, JL; Matos, T; Faria, CL; Penso, CM; Martins, MS; Gomes, PA; Gonçalves, LM;
Publication
2023 IEEE SENSORS
Abstract
A versatile, miniaturized, cost-effective, low-power wave profile and tide monitoring system, capable of long-term and scalable deployment, was developed to integrate pressure and temperature sensors in an RS485 network, for standalone operation with organized memory or real-time shared data monitoring. The pressure and temperature sensors are controlled by low-power microcontrollers, that communicate the data periodically to a datalogger, that depending on the application, store it in a removable SD card or send it to a server via Wi-Fi. The data is then analyzed to compensate for the loss in amplitude sensitivity according to the sensor's depth. The wave profile can be sampled at a maximum rate of 100 Hz, with a 1 cm resolution. The system was tested successfully in real-life conditions, in rivers Douro and Cavado, and off the coast of Viana do Castelo.
2023
Authors
Martins, JJ; Silva, M; Santos, F;
Publication
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1
Abstract
To produce more food and tackle the labor scarcity, agriculture needs safer robots for repetitive and unsafe tasks (such as spraying). The interaction between humans and robots presents some challenges to ensure a certifiable safe collaboration between human-robot, a reliable system that does not damage goods and plants, in a context where the environment is mostly dynamic, due to the constant environment changes. A well-known solution to this problem is the implementation of real-time collision avoidance systems. This paper presents a global overview about state of the art methods implemented in the agricultural environment that ensure human-robot collaboration according to recognised industry standards. To complement are addressed the gaps and possible specifications that need to be clarified in future standards, taking into consideration the human-machine safety requirements for agricultural autonomous mobile robots.
2022
Authors
Ferreira, B; Alves, J; Cruz, N; Graca, P;
Publication
2022 OCEANS HAMPTON ROADS
Abstract
This paper addresses the localization of an unsynchronized acoustic source using a single receiver and a synthetic baseline. The enclosed work was applied in a real search of an electric glider that was lost at sea and later recovered, using the described approach. The search procedure is presented along with the localization methods and a metric based on the eigenvalues of the Fisher Information Matrix is used to quantify the expected uncertainty of the estimate.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.