Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRAS

2021

Evaluation of Bags of Binary Words for Place Recognition in Challenging Scenarios

Authors
Gaspar, AR; Nunes, A; Matos, A;

Publication
2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract
To perform autonomous tasks, robots in real-world environments must be able to navigate in dynamic and unknown spaces. To do so, they must recognize previously seen places to compensate for accumulated positional deviations. This task requires effective identification of recovered landmarks to produce a consistent map, and the use of binary descriptors is increasing, especially because of their compact representation. The visual Bag-of-Words (BoW) algorithm is one of the most commonly used techniques to perform appearance-based loop closure detection quickly and robustly. Therefore, this paper presents a behavioral evaluation of a conventional BoW scheme based on Oriented FAST and Rotated BRIEF (ORB) features for image similarity detection in challenging scenarios. For each scenario, full-indexing vocabularies are created to model the operating environment and evaluate the performance for recognizing previously seen places similar to online approaches. Experiments were conducted on multiple public datasets containing scene changes, perceptual aliasing conditions, or dynamic elements. The Bag of Binary Words technique shows a good balance to deal with such severe conditions at a low computational cost.

2021

DIIUS - Distributed Perception for Inspection of Aquatic Structures

Authors
Campos D.F.; Pereira M.; Matos A.; Pinto A.M.;

Publication
Oceans Conference Record (IEEE)

Abstract
The worldwide context has fostered the innovation geared to the blue growth. However, the aquatic environment imposes many restrictions to mobile robots, as their perceptual capacity becomes severely limited. DIIUS aims to strengthen the perception of distributed robotic systems to improve the current procedures for inspection of aquatic structures (constructions and/or vessels).The perception of large working areas from multiples robots raises a number of unresolved inference problems and calls for new interaction patterns between multiple disciplines, both at the conceptual and technical level. To address this important challenge, the DIIUS project seeks to reinforce the current state-of-art in several scientific domains that fit into artificial intelligence, computer vision, and robotics. Through case studies focused on 3D mapping of aquatic structures (ex., maritime constructions and adduction tunnels), the project investigates new spatio-temporal data association techniques, including the correlation of sensors from heterogeneous robot formations operating in environments with communications constraints.

2021

Differential Pressure Speedometer for Autonomous Underwater Vehicle

Authors
Villa, MP; Ferreira, BM; Matos, AC;

Publication
OCEANS 2021: San Diego – Porto

Abstract

2021

Occupancy Grid Mapping from 2D SONAR Data for Underwater Scenes

Authors
Nunes, A; Gaspar, AR; Matos, A;

Publication
OCEANS 2021: San Diego – Porto

Abstract

2021

ATLANTIS - The Atlantic Testing Platform for Maritime Robotics

Authors
Pinto A.M.; Marques J.V.A.; Campos D.F.; Abreu N.; Matos A.; Jussi M.; Berglund R.; Halme J.; Tikka P.; Formiga J.; Verrecchia C.; Langiano S.; Santos C.; Sa N.; Stoker J.J.; Calderoni F.; Govindaraj S.; But A.; Gale L.; Ribas D.; Hurtos N.; Vidal E.; Ridao P.; Chieslak P.; Palomeras N.; Barberis S.; Aceto L.;

Publication
Oceans Conference Record (IEEE)

Abstract
The ATLANTIS project aims to establish a pioneer pilot infrastructure that will allow the demonstration of key enabling robotic technologies for inspection and maintenance of offshore wind farms. The pilot will be implemented in Viana do Castelo, Portugal, and will allow for testing, validation and demonstration of technologies with a range of technology readiness level, in near-real/real environments.The demonstration of robotic technologies can promote the transition from traditional inspection and maintenance methodologies towards automated robotic strategies, that remove or reduce the need of human-in-the-loop, reducing costs and improving the safety of interventions. Eight scenarios, split into four showcases, will be used to determine the required developments for robotic integration and demonstrate the applicability in the inspection and maintenance processes. The scenarios considered were identified by end-users as key areas for robotics.

2021

Remote Hyperspectral Imaging Acquisition and Characterization for Marine Litter Detection

Authors
Freitas, S; Silva, H; Silva, E;

Publication
REMOTE SENSING

Abstract
This paper addresses the development of a remote hyperspectral imaging system for detection and characterization of marine litter concentrations in an oceanic environment. The work performed in this paper is the following: (i) an in-situ characterization was conducted in an outdoor laboratory environment with the hyperspectral imaging system to obtain the spatial and spectral response of a batch of marine litter samples; (ii) a real dataset hyperspectral image acquisition was performed using manned and unmanned aerial platforms, of artificial targets composed of the material analyzed in the laboratory; (iii) comparison of the results (spatial and spectral response) obtained in laboratory conditions with the remote observation data acquired during the dataset flights; (iv) implementation of two different supervised machine learning methods, namely Random Forest (RF) and Support Vector Machines (SVM), for marine litter artificial target detection based on previous training. Obtained results show a marine litter automated detection capability with a 70-80% precision rate of detection in all three targets, compared to ground-truth pixels, as well as recall rates over 50%.

  • 25
  • 167