Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRAS

2021

Variable Buoyancy or Propeller-Based Systems for Hovering Capable Vehicles: An Energetic Comparison

Authors
Carneiro, JF; Pinto, JB; de Almeida, FG; Cruz, NA;

Publication
IEEE JOURNAL OF OCEANIC ENGINEERING

Abstract
The growth of undersea exploration is pushing both the length and the complexity of propeller-driven autonomous underwater vehicles (AUVs) missions, leading to more stringent energy requirements. One approach to decrease the energy consumption of a hovering capable AUV is to use variable buoyancy systems (VBS) as a complement to the propeller actuators. These devices only require energy consumption during limited periods of time, taking into advantage the fact that whenever buoyancy is different from zero, the vehicle will continuously ascend or descend. Nevertheless, literature is scarce regarding the choice of the type of the VBS and of its constitutive elements, and regarding their effects on the energy required for buoyancy changes. This work presents structured and detailed static models of electromechanical and electrohydraulic VBSs that allow the calculation of the power required to actuate them. Based on the VBS desired characteristics and on manufacturer's data, the power consumption in each element of the VBS can be pinpointed to determine critical elements. Furthermore, a direct energy comparison with propeller-based solutions can be performed, allowing an easy evaluation of the energy gains provided by the VBS in different scenarios. This work also presents the preliminary development of an electromechanical and electrohydraulic VBS for an existing AUV at the University of Porto, Porto, Portugal. Based on the developed VBS and the developed model, numerical examples are provided for typical mission profiles. It is shown that the use of a VBS in the case of the existing AUV at the University of Porto leads to considerable energetic improvements.

2021

32 Using a Simulation Environment to Assess the Usability of a Novel Medical Device During the Covid-19 Pandemic

Authors
Sa-Couto, C; Nicolau, A; de Sousa, C; Cruz, N;

Publication
International Journal of Healthcare Simulation

Abstract
It was a recognized challenge of lack of ventilators needed to face COVID-19 worldwide. Although ventilators are sparse, self-inflating manual resuscitators are widely available in-hospital services, providing a rapid response to respiratory depression. Based on this, a device (PNEUMA) This work describes the use of a simulation environment to test the usability of a novel device to automate self-inflating manual resuscitators.The usability study was divided into two parts: (1) participants followed a protocol with instructions for assembling and using the system in a non-clinical context (Usability testing. Left panel – assembly of the system (part I); right panel – use of the system in an immersive clinical simulation environment (part II).A convenience sample (two MDs and six RNs) from an intensive care unit of a tertiary Portuguese hospital participated in the test. Usability testing showed that the system was easy and timely assembled, with low complexity of use (e.g. not requiring external help). The clinical scenario tested the transition between spontaneous and mechanical ventilation, and ventilatory parameters’ control, using PNEUMA. All participants reported that the controllable parameters (I:E, RR, Vol, PIP, Plat, and PEEP) were relevant and easy to change. Participants suggested the inclusion of patient parameters such as the tidal volume and lung compliance. Participants also suggested improvements, such as the inclusion of pressure alarms and a more user-friendly interface. All participants reported that they would be willing to use the device for emergency use.The reported study resulted in recommendations and ameliorations of the device, before its use in real settings, in the context of the COVID-19 pandemic. The use of simulation environments for device/systems’ testing provides a timely and standardized approach, enabling a safer clinical practice.

2021

Feature-based Underwater Localization using Imaging Sonar in Confined Environments

Authors
Oliveira, AJ; Ferreira, BM; Cruz, NA;

Publication
OCEANS 2021: San Diego – Porto

Abstract

2021

Multi-domain inspection of offshore wind farms using an autonomous surface vehicle

Authors
Campos, DF; Matos, A; Pinto, AM;

Publication
SN APPLIED SCIENCES

Abstract
The offshore wind power industry is an emerging and exponentially growing sector, which calls to a necessity for a cyclical monitoring and inspection to ensure the safety and efficiency of the wind farm facilities. Thus, the emersed (aerial) and immersed (underwater) scenarios must be reconstructed to create a more complete and reliable map that maximizes the observability of all the offshore structures from the wind turbines to the cable arrays, presenting a multi domain scenario.This work proposes the use of an Autonomous Surface Vehicle (ASV) to map both domains simultaneously. As such, it will produce a multi-domain map through the fusion of navigational sensors, GPS and IMU, to localize the vehicle and aid the registration process for the perception sensors, 3D Lidar and Multibeam echosounder sonar. The performed experiments demonstrate the ability of the multi-domain mapping architecture to provide an accurate reconstruction of both scenarios into a single representation using the odometry system as the initial seed to further improve the map with data filtering and registration processes. An error of 0.049 m for the odometry estimation is observed with the GPS/IMU fusion for simulated data and 0.07 m for real field tests. The multi-domain map methodology requires an average of 300 ms per iteration to reconstruct the environment, with an error of at most 0.042 m in simulation.

2021

Evaluation of Bags of Binary Words for Place Recognition in Challenging Scenarios

Authors
Gaspar, AR; Nunes, A; Matos, A;

Publication
2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract
To perform autonomous tasks, robots in real-world environments must be able to navigate in dynamic and unknown spaces. To do so, they must recognize previously seen places to compensate for accumulated positional deviations. This task requires effective identification of recovered landmarks to produce a consistent map, and the use of binary descriptors is increasing, especially because of their compact representation. The visual Bag-of-Words (BoW) algorithm is one of the most commonly used techniques to perform appearance-based loop closure detection quickly and robustly. Therefore, this paper presents a behavioral evaluation of a conventional BoW scheme based on Oriented FAST and Rotated BRIEF (ORB) features for image similarity detection in challenging scenarios. For each scenario, full-indexing vocabularies are created to model the operating environment and evaluate the performance for recognizing previously seen places similar to online approaches. Experiments were conducted on multiple public datasets containing scene changes, perceptual aliasing conditions, or dynamic elements. The Bag of Binary Words technique shows a good balance to deal with such severe conditions at a low computational cost.

2021

DIIUS - Distributed Perception for Inspection of Aquatic Structures

Authors
Campos D.F.; Pereira M.; Matos A.; Pinto A.M.;

Publication
Oceans Conference Record (IEEE)

Abstract
The worldwide context has fostered the innovation geared to the blue growth. However, the aquatic environment imposes many restrictions to mobile robots, as their perceptual capacity becomes severely limited. DIIUS aims to strengthen the perception of distributed robotic systems to improve the current procedures for inspection of aquatic structures (constructions and/or vessels).The perception of large working areas from multiples robots raises a number of unresolved inference problems and calls for new interaction patterns between multiple disciplines, both at the conceptual and technical level. To address this important challenge, the DIIUS project seeks to reinforce the current state-of-art in several scientific domains that fit into artificial intelligence, computer vision, and robotics. Through case studies focused on 3D mapping of aquatic structures (ex., maritime constructions and adduction tunnels), the project investigates new spatio-temporal data association techniques, including the correlation of sensors from heterogeneous robot formations operating in environments with communications constraints.

  • 30
  • 173