Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CSE

2022

An Ontology for Fire Building Evacuation

Authors
Neto, J; Morais, AJ; Gonçalves, R; Coelho, AL;

Publication
Proceedings of Sixth International Congress on Information and Communication Technology - ICICT 2021, London, Volume 3

Abstract
Guiding the building occupants under fire emergency to a safe place is an open research problem. Finding solutions to address the problem requires a perfect knowledge of the fire building evacuation domain. The use of ontologies to model knowledge of a domain allows a common and shared understanding of that domain, between people and heterogeneous systems. This paper presents an ontology that aims to build a knowledge model to better understand the referred domain and to help develop more capable building evacuation solutions and systems. The herein proposed ontology considers the different variables and actors involved in the fire building evacuation process. We followed the Methontology methodology for its developing, and we present all the development steps, from the specification to its implementation with the Protégé tool.

2022

An holistic monitoring system for measurement of the atmospheric electric field over the ocean - the SAIL campaign

Authors
Barbosa, S; Dias, N; Almeida, C; Amaral, G; Ferreira, A; Lima, L; Silva, I; Martins, A; Almeida, J; Camilo, M; Silva, E;

Publication
OCEANS 2022

Abstract
The atmospheric electric field is a key characteristic of the Earth system. Despite its relevance, oceanic measurements of the atmospheric electric field are scarce, as typically oceanic measurements tend to be focused on ocean properties rather than on the atmosphere above. This motivated the set-up of an innovative campaign on board the sail ship NRP Sagres focused on the measurement of the atmospheric electric field in the marine boundary layer. This paper describes the monitoring system that was developed to measure the atmospheric electric field during the planned circumnavigation expedition of the sail ship NRP Sagres.

2022

A Survey on the Adoption of Patterns for Engineering Software for the Cloud

Authors
Sousa, TB; Ferreira, HS; Correia, FF;

Publication
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Abstract
This work takes as a starting point a collection of patterns for engineering software for the cloud and tries to find how they are regarded and adopted by professionals. Existing literature assesses the adoption of cloud computing with a focus on business and technological aspects and falls short in grasping a holistic view of the underlying approaches. Other authors delve into how independent patterns can be discovered (mined) and verified, but do not provide insights on their adoption. We investigate (1) the relevance of the patterns for professional software developers, (2) the extent to which product and company characteristics influence their adoption, and (3) how adopting some patterns might correlate with the likelihood of adopting others. For this purpose, we survey practitioners using an online questionnaire (n = 102). Among other findings, we conclude that most companies use these patterns, with the overwhelming majority (97 percent) using at least one. We observe that the mean pattern adoption tends to increase as companies mature, namely when varying the product operation complexity, active monthly users, and company size. Finally, we search for correlations in the adoption of specific patterns and attempt to infer causation, providing further clues on how some practices depend or influence the adoption of others. We conclude that the adoption of some practices correlates with specific company and product characteristics, and find relationships between the patterns that were not covered by the original pattern language and which might deserve further investigation.

2022

Automating microsatellite screening and primer design from multi-individual libraries using Micro-Primers

Authors
Alves, F; Martins, FMS; Areias, M; Munoz Merida, A;

Publication
SCIENTIFIC REPORTS

Abstract
Analysis of intra- and inter-population diversity has become important for defining the genetic status and distribution patterns of a species and a powerful tool for conservation programs, as high levels of inbreeding could lead into whole population extinction in few generations. Microsatellites (SSR) are commonly used in population studies but discovering highly variable regions across species' genomes requires demanding computation and laboratorial optimization. In this work, we combine next generation sequencing (NGS) with automatic computing to develop a genomic-oriented tool for characterizing SSRs at the population level. Herein, we describe a new Python pipeline, named Micro-Primers, designed to identify, and design PCR primers for amplification of SSR loci from a multi-individual microsatellite library. By combining commonly used programs for data cleaning and microsatellite mining, this pipeline easily generates, from a fastq file produced by high-throughput sequencing, standard information about the selected microsatellite loci, including the number of alleles in the population subset, and the melting temperature and respective PCR product of each primer set. Additionally, potential polymorphic loci can be identified based on the allele ranges observed in the population, to easily guide the selection of optimal markers for the species. Experimental results show that Micro-Primers significantly reduces processing time in comparison to manual analysis while keeping the same quality of the results. The elapsed times at each step can be longer depending on the number of sequences to analyze and, if not assisted, the selection of polymorphic loci from multiple individuals can represent a major bottleneck in population studies.

2022

SEGMENTATION AS A PREPROCESSING TOOL FOR AUTOMATIC GRAPEVINE CLASSIFICATION

Authors
Carneiro, GA; Padua, L; Peres, E; Morais, R; Sousa, JJ; Cunha, A;

Publication
2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022)

Abstract
The grapevine variety plays an important role in wine chain production, thus identifying it is crucial for control activities. However, the specialists responsible for identifying the different varieties, mainly through visual analysis, are disappearing. In this scenario, Deep Learning (DL) classification techniques become a possible solution to handle professionals' scarcity. Nevertheless, previous experiments show that trained classification models use the background information to make decisions, which should be avoided. In this paper, we present a study allowing the assessment of removing background regions from the grapevine images in the improvement classification using DL models. The Xception model is trained with a normal dataset and its segmented version. The Local Interpretable Model-Agnostic Explanations (LIME), Grad-CAM, and Grad-CAM++ approaches are used to visualize the segmentation impact in classification decisions. F1-score of 0.92 and 0.94 were achieved, respectively, for segmented-dataset and normal-dataset trained models. Despite the model trained with the segmented-dataset to achieve a worse performance, the Explainable Artificial Intelligence (XAI) approaches showed that it looks into more reliable regions when making decisions.

2022

Proactive monitoring design patterns for cloud-native applications

Authors
Albuquerque, C; Relvas, K; Correia, FF; Brown, K;

Publication
Proceedings of the 27th European Conference on Pattern Languages of Programs, EuroPLop 2022, Irsee, Germany, July 6-10, 2022

Abstract
The quality of the digital experiences delivered by engineers and their business success depends on empowering developers and operators with an effective method for continuously assessing a system's health, diagnosing possible issues, and recovering from service outages. In other words, monitoring is essential to ensure the quality of an application. However, monitoring best practices may not be apparent to everyone and, most of the time, are not sufficiently explained or documented to be learned quickly and communicated effectively. Therefore, practices usually lack formalisation and a standard structure that would make all of them easy to communicate and share among practitioners. To tackle this issue, this paper describes three proactive monitoring practices as design patterns: Liveness Endpoint, Readiness Endpoint and Synthetic Testing. Design patterns provide enough structure and detail to be easily reused by practitioners and have space to accommodate different needs and quirks depending on the usage context. The proposed patterns are based on existing literature and tools, stemming from industry best practices that are further detailed and adapted to design patterns. Relations to existing monitoring patterns are also analysed to point the reader to more patterns that complement the ones proposed in this work. © 2022 Owner/Author.

  • 41
  • 220