Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRAS

2019

In situ real-time Zooplankton Detection and Classification

Authors
Geraldes, P; Barbosa, J; Martins, A; Dias, A; Magalhaes, C; Ramos, S; Silva, E;

Publication
OCEANS 2019 - MARSEILLE

Abstract
Zooplankton plays a key -role on Earth's ecosystem, emerging in the oceans and rivers in great quantities and diversity, making it an important and rather common topic on scientific studies. Given the numbers of different species it is not only necessary to study their numbers but also their classification. In this paper a possible solution for the zooplankton in situ detection and classification problem in real-time is proposed using a portable deep learning approach based on Convolutional Neural Networks deployed on INESC TEC's MarinEye system. For detection a Single Shot Detection model with MobileNet was used, and ZooplanktoNet for classification. System portability is guaranteed with the use of MovidiusTMNeural Compute Stick as the deep learning motor.

2019

Low Cost Underwater Acoustic Positioning System with a Simplified DoA Algorithm

Authors
Guedes, P; Viana, N; Silva, J; Amaral, G; Ferreira, H; Dias, A; Almeida, JM; Martins, A; Silva, EP;

Publication
OCEANS 2019 MTS/IEEE SEATTLE

Abstract
For the context of a mobile tracking system, an underwater acoustic positioning system was developed, using three hydrophones to compute the direction of an acoustic source relative to an Autonomous Surface Vehicle (ASV). The paper presents an algorithm for the Direction of Arrival (DoA) of an acoustic source, which allows to estimate its position. Preliminary results will be shown in this paper relative to the detection and identification (ID) of the acoustic sources, as well as an analysis of the proposed algorithm. The solution allows the position estimation of an acoustic source, which can be used in tracking solutions. The system can be applied in an ASV or fixed buoys, as long as the baseline's hydrophones are at equal angular distances. The main objective is to track targets with the DoA algorithm as well to estimate their position, improving what was done in [1].

2019

Design and Development of a multi rotor UAV for Oil Spill Mitigation

Authors
Oliveira, A; Pedrosa, D; Santos, T; Dias, A; Amaral, G; Martins, A; Almeida, J; Silva, E;

Publication
OCEANS 2019 - MARSEILLE

Abstract
Over the last few years, oil spill incidents occured with some regularity during exploration, production and transportation, causing a large economic and ecologic impact in the world community. To minimise these impacts and reduce the time response of the initial mitigation process, autonomous vehicles, such as unmanned aerial vehicles (UAV) can be used to perform oil spill monitoring and mitigation. This paper presents the design and implementation of a multirotor UAV capable of identifying and combat the oil spill, by using a release system of consortia with bacteria and nutrients. Several field tests occurred in Portugal and Spain, where the oil spill was implemented in a simulated environment, resulting in a cooperative and simultaneous manoeuvre between the vehicles.

2019

ROSM - Robotic Oil Spill Mitigation

Authors
Dias, A; Mucha, AP; Santos, T; Pedrosa, D; Amaral, G; Ferreira, H; Oliveira, A; Martins, A; Almeida, J; Almeida, CM; Ramos, S; Magalhaes, C; Carvalho, MF; Silva, E;

Publication
OCEANS 2019 - MARSEILLE

Abstract
The overall aim of the ROSM project is the implementation of an innovative solution based on heterogeneous autonomous vehicles to tackle maritime pollution (in particular, oil spills). These solutions will be based on native microbial consortia with bioremediation capacity, and the adaptation of air and surface autonomous vehicles for in-situ release of autochthonous microorganisms (bioaugmentation) and nutrients (biostimulation). By doing so, these systems can be used as the first line of the responder to pollution incidents from several origins that may occur inside ports, around industrial and extraction facilities, or during transport activities, in a fast, efficient and low-cost way. The paper will address the development of a team of autonomous vehicles able to carry, as payload, native organisms to naturally degrade oil spills (avoiding the introduction of additional chemical or biological additives), the development of a multi-robot system able to provide a first line responses to oil spill incidents under unfavourable and harsh conditions with low human intervention, and then a decentralized cooperative planning with the ability to coordinate an efficient oil spill combat. Field tests have been performed in Leixoes Harbour in Porto and Medas, Portugal, with a simulated oil spill and validated the decentralized coordinated task between the autonomous surface vehicle (ASV) ROAZ and the unmanned aerial vehicle (UAV).

2019

Hybrid Approach to Estimate a Collision-Free Velocity for Autonomous Surface Vehicles

Authors
Silva, R; Leite, P; Campos, D; Pinto, AM;

Publication
2019 19TH IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2019)

Abstract
Shipping transportation mode needs to be even more efficient, profitable and secure as more than 80% of the world's trade is done by sea. Autonomous ships will provide the possibility to eliminate the likelihood of human error, reduce unnecessary crew costs and increase the efficiency of the cargo spaces. Although a significant work is being made, and new algorithms are arising, they are still a mirage and still have some problems regarding safety, autonomy and reliability. This paper proposes an online obstacle avoidance algorithm for Autonomous Surfaces Vehicles (ASVs) introducing the reachability with the protective zone concepts. This method estimates a collision-free velocity based on inner and outer constraints such as, current velocity, direction, maximum speed and turning radius of the vehicle, position and dimensions of the surround obstacles as well as a movement prediction in a close future. A non-restrictive estimative for the speed and direction of the ASV is calculated by mapping a conflict zone, determined by the course of the vehicle and the distance to obstacles that is used to avoid imminent dangerous situations. A set of simulations demonstrates the ability of this method to safely circumvent obstacles in several scenarios with different weather conditions.

2019

Underwater Object Recognition: A Domain-Adaption Methodology of Machine Learning Classifiers

Authors
Afonso, APO; Pinto, AM;

Publication
OCEANS 2019 MTS/IEEE SEATTLE

Abstract
This paper presents a novel dataset, composed of images of objects in two distinct environments and both controlled and uncontrolled capture conditions, aimed at serving as a benchmark for domain-adaptation image classification algorithms in an air versus underwater context. All images are fully annotated, extending the use of the dataset for detection as well as segmentation tasks. An exemplifying use-case is tested, where the performance of a Support Vector Machine applied to a Bag-of-Visual-Words and SIFT features is evaluated on both domains, with different training methodologies. Results demonstrate that the conventional classifier used has a lack of generalization ability, with a poor transfer of knowledge from the aerial to the aquatic domain.

  • 61
  • 174