Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRAS

2016

TURTLE - A robotic autonomous deep sea lander

Authors
Silva, E; Martins, A; Almeida, JM; Ferreira, H; Valente, A; Camilo, M; Figueiredo, A; Pinheiro, C;

Publication
OCEANS 2016 MTS/IEEE MONTEREY

Abstract
This paper presents a new concept for a deep sea lander system combining both sea bottom permanence characteristics with autonomous repositioning functionalities and efficient ascent/descent motion in the water column. The TURTLE hybrid lander is a particular type of autonomous underwater vehicle designed to act as sea bottom fixed observation node or in operations of transport equipment to the deep sea. The paper discusses the general concept of operation and applications and also presents the developed prototype. This system was developed under a dual use EDA (European Defense Agency) project and with national and European funds. Considered as one of the dual use (civil and military) success stories, the demonstrator was equipped to sensors allowing both seismographic data gathering and acoustic monitoring applications.

2016

UAV Trials for Multi-Spectral Imaging Target Detection and Recognition in Maritime Environment

Authors
Silva, H; Almeida, JM; Lopes, F; Ribeiro, JP; Freitas, S; Amaral, G; Almeida, C; Martins, A; Silva, E;

Publication
OCEANS 2016 MTS/IEEE MONTEREY

Abstract
This paper addresses the use of heterogeneous sensors for target detection and recognition in maritime environment. An Unmanned Aerial Vehicle payload was assembled using hyperspectral, infrared, electro-optical, AIS and INS information to collect synchronized sensor data with vessel ground-truth position for conducting air and sea trials. The data collected is used to develop automated robust methods for detect and recognize vessels based on their exogenous physical characteristics and their behaviour across time. Data Processing preliminary results are also presented.

2016

Assessment of Robotic Picking Operations Using a 6 Axis Force/Torque Sensor

Authors
Moreira, E; Rocha, LF; Pinto, AM; Moreira, AP; Veiga, G;

Publication
IEEE ROBOTICS AND AUTOMATION LETTERS

Abstract
This letter presents a novel architecture for evaluating the success of picking operations that are executed by industrial robots. It is formed by a cascade of machine learning algorithms (kNN and SVM) and uses information obtained by a 6 axis force/torque sensor and, if available, information from the built-in sensors of the robotic gripper. Beyond measuring the success or failure of the entire operation, this architecture makes it possible to detect in real-time when an object is slipping during the picking. Therefore, force and torque signatures are collected during the picking movement of the robot, which is decomposed into five different stages that allows to characterize distinct levels of success over time. Several trials were performed using an industrial robot with two different grippers for picking a long and flexible object. The experiments demonstrate the reliability of the proposed approach under different picking scenarios since, it obtained a testing performance (in terms of accuracy) up to 99.5% of successful identification of the result of the picking operations, considering an universe of 400 attempts.

2016

An Optimization Approach for the Inverse Kinematics of a Highly Redundant Robot

Authors
Costa, P; Lima, J; Pereira, AI; Costa, P; Pinto, A;

Publication
PROCEEDINGS OF THE SECOND INTERNATIONAL AFRO-EUROPEAN CONFERENCE FOR INDUSTRIAL ADVANCEMENT (AECIA 2015)

Abstract
This paper describes a robot with 12 degrees of freedom for pick-and-place operations using bricks. In addition, an optimization approach is proposed, which determines the state of each joint (that establishes the pose for the robot) based on the target position while minimizing the effort of the servomotors avoiding the inverse kinematics problem, which is a hard task for a 12 DOF robot manipulator. Therefore, it is a multi-objective optimization problem that will be solved using two optimization methods: the Stretched Simulated Annealing method and the NSGA II method. The experiments conducted in a simulation environment prove that the proposed approach is able to determine a solution for the inverse kinematics problem. A real robot formed by several servomotors and a gripper is also presented in this research for validating the solutions.

2016

The SPIDERobot: A Cable-Robot System for On-site Construction in Architecture

Authors
Sousa, JP; Palop, CG; Moreira, E; Pinto, AM; Lima, J; Costa, P; Costa, P; Veiga, G; Paulo Moreira, A;

Publication
Robotic Fabrication in Architecture, Art and Design 2016

Abstract

2016

WirelessSyncroVision: Wireless synchronization for industrial stereoscopic systems

Authors
Pinto, AM; Moreira, AP; Costa, PG;

Publication
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

Abstract
The research proposes a novel technological solution for marker-based human motion capture called WirelessSyncroVision (WSV). The WSV is formed by two main modules: the visual node (WSV-V) which is based on a stereoscopic vision system and the marker node (WSV-M) that is constituted by a 6-DOF active marker. The solution synchronizes the acquisition of images in remote muti-cameras with the ON period of the active marker. This increases the robustness of the stereoscopic system to illumination changes, which is extremely relevant for programming industrial robotic-arms using a human demonstrator programming by demonstration (PbD). In addition, the research presents a robust method named Adaptive and Robust Synchronization (ARS), that is designed for temporal alignment of remote devices using a wireless network. The algorithm models the phase difference as a function of time, measuring the parameters that must be known to predict the synchronization instant between the active marker and the remote cameras. Results demonstrate that the ARS creates a balance between the real-time capability and the performance estimation of the phase difference. Therefore, this research proposes an elegant solution to synchronize image acquisition systems in real-time that is easy to implement with low operational costs; however, the major advantage of the WSV is related to its high level of flexibility since it can be extended toward to other devices besides the PbD, for instance, motion capture, motion analysis, and remote sensoring systems.

  • 80
  • 167