Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRAS

2017

Fish Farming Autonomous Calibration System

Authors
Lopes, F; Silva, H; Almeida, JM; Pinho, C; Silva, E;

Publication
OCEANS 2017 - ABERDEEN

Abstract
The fish farming industry is becoming widespread all over the world. By 2039 most of the fish we eat will come from the fish farming industry. In this work, we propose an autonomous robotic solution for indoor fish farming biomass estimation. Our proposed system moves silently on top of the tank borders using differential wheels and a structured light vision system (SLS). The SLS system is composed by a camera and two line lasers (projectors) equipped with a line beam that allows to obtain the fish depth profile present in the tank to perform biomass estimation. Results in laboratory and in real aquaculture environment with live fish are presented.

2017

Simulation Environment for Underground Flooded Mines Robotic Exploration

Authors
Sytnyk, D; Pereira, R; Pedrosa, D; Rodrigues, J; Martins, A; Dias, A; Almeida, J; Silva, E;

Publication
OCEANS 2017 - ABERDEEN

Abstract
Underwater experiments with unmanned vehicles are complex, costly, time-consuming and in some circumstances potentially dangerous, involving the risk of losing or damaging the robots. The nature of the underwater environment, makes it very difficult, for researchers, to observe the evolution of the running system. Simulators are useful tools for the development of unmanned vehicle software, algorithm benchmarking and system preliminary validation. In this work, the problem of simulating a complex underwater scenario for marine robotics and a comparative analysis of simulators for marine robotics are presented. Relevant sensors for underwater robots under development, such as multibeam and imaging 2D sonar were implemented in two simulators and tested in a realistic experimental scenario like a flooded mine.

2017

UAV Cooperative Perception based on DDS communications network

Authors
Ribeiro, JP; Fontes, H; Lopes, M; Silva, H; Campos, R; Almeida, JM; Silva, E;

Publication
OCEANS 2017 - ANCHORAGE

Abstract
This paper focus on the use of unmanned aerial vehicle teams for performing cooperative perception using Data Distribution Service (DDS) Network. We develop a DDS framework to manage the incoming and out bounding network traffic of multiple types of data that is exchanged inside the UAV network. Experimental results both in laboratory and in actual flight are presented to help characterize the proposed system solution.

2017

Autonomous Systems in remote areas of the Ocean using BLUECOM plus communication network

Authors
Ferreira, H; Silva, F; Sousa, P; Matias, B; Faria, A; Oliveira, J; Almeida, JM; Martins, A; Silva, E;

Publication
OCEANS 2017 - ANCHORAGE

Abstract
The authors present a series of sea trails with autonomous systems using a long-range communication network. The continuous monitoring of the oceans and realtime data gathering/monitoring is a key issue in future marine challenges. To have long range communication, between land and ships at tens of kilometers', the authors used the BlueCom+ project research trials and tested their robotic systems. Bluecom+ project intends to fill the gap of long range communication with high bandwidth. It was demonstrated the usefulness of the system using autonomous systems, such as a small unmanned vehicle (ROAZ USV) for bathymetric mapping and tested an underwater acoustic positioning and communications system. © 2017 Marine Technology Society.

2017

Simulation Environment for Underground Flooded Mines Robotic Exploration

Authors
Pereira, R; Rodrigues, J; Martins, A; Dias, A; Almeida, J; Almeida, C; Silva, E;

Publication
2017 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract
This paper presents the work performed in the implementation of an underwater simulation environment for the development of an autonomous underwater vehicle for the exploration of flooded underground tunnels. In particular, the implementation of a laser based structured light system, multibeam sonar and other robot details were addressed. The simulation was used as a relevant tool in order to study and specify the robot multiple sensors characteristics and placement in order to adequately survey a realistic environment. A detailed description of the research and development work is presented along with the analysis of obtained results and the benefits this work brings to the project.

2017

A Fast and Robust Kinematic Model for a 12 DoF Hyper-Redundant Robot Positioning: an Optimization Proposal

Authors
Lima, J; Pereira, AI; Costa, P; Pinto, A; Costa, P;

Publication
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016)

Abstract
This paper describes an optimization procedure for a robot with 12 degrees of freedom avoiding the inverse kinematics problem, which is a hard task for this type of robot manipulator. This robot can be used to pick and place tasks in complex designs. Combining an accurate and fast direct kinematics model with optimization strategies, it is possible to achieve the joints angles for a desired end-effector position and orientation. The optimization methods stretched simulated annealing algorithm and genetic algorithm were used. The solutions found were validated using data originated by a real and by a simulated robot formed by 12 servomotors with a gripper.

  • 87
  • 178