2023
Authors
Goncalves, CF; Cruz, NA; Ferreira, BM;
Publication
2023 IEEE UNDERWATER TECHNOLOGY, UT
Abstract
This paper describes a robotic system to detect and estimate the volume of sediments in underwater wall corners, in scenarios with zero visibility. All detection and positioning is based on data from a scanning sonar. The main idea is to scan the walls and the bottom of the structure to detect the corner, and then use data obtained in the direction of the corner to estimate the presence of sediment accumulation and its volume. Our approach implements an image segmentation to extract range from the surfaces of interest. The resulting data is then employed for relative localization and estimate of the sediment accumulation. The paper provides information about the methodologies developed and data from practical experiments.
2023
Authors
Monica, P; Cruz, N; Almeida, JM; Silva, A; Silva, E; Pinho, C; Almeida, C; Viegas, D; Pessoa, LM; Lima, AP; Martins, A; Zabel, F; Ferreira, BM; Dias, I; Campos, R; Araujo, J; Coelho, LC; Jorge, PS; Mendes, J;
Publication
OCEANS 2023 - LIMERICK
Abstract
One way to mitigate the high costs of doing science or business at sea is to create technological infrastructures possessing all the skills and resources needed for successful maritime operations, and make those capabilities and skills available to the external entities requiring them. By doing so, the individual economic and scientific agents can be spared the enormous effort of creating and maintaining their own, particular set of equivalent capabilities, thus drastically lowering their initial operating costs. In addition to cost savings, operating based on fully-fledged, shared infrastructures not only allows the use of more advanced scientific equipment and highly skilled personnel, but it also enables the business teams (be it industry or research) to focus on their goals, rather than on equipment, logistics, and support. This paper will describe the TEC4SEA infrastructure, created precisely to operate as described. This infrastructure has been under implementation in the last few years, and has now entered its operational phase. This paper will describe it, present its current portfolio of services, and discuss the most relevant assets and facilities that have been recently acquired, so that the research and industrial communities requiring the use of such assets can fully evaluate their adequacy for their own purposes and projects.
2023
Authors
Carneiro, JF; Pinto, JB; de Almeida, FG; Cruz, NA;
Publication
ACTUATORS
Abstract
Depth control is crucial for underwater vehicles, not only to perform certain tasks that require the vehicle to be still at a given depth but also because most propeller-driven vehicles waste a considerable amount of energy to counteract the passively tuned positive buoyancy. The use of a variable buoyancy system (VBS) can effectively address these items, increasing the energetic efficiency and thus mission length. Achieving accurate depth controllers is, however, a complex task, since experimental controller development in sea or even in test pools is unpractical and the use of simulation requires accurate vertical motion models whose parameters might be difficult to obtain or measure. The development of simple, yet comprehensive, dynamic models for devices incorporating VBS is therefore of upmost importance, as well as developing procedures that allow a simple determination of their parameters. This work contributes to this field by deriving a unified model for the vertical motion of a VBS actuated device, irrespective of the specific technological actuation solution employed, whether it be electromechanical or electrohydraulic. A concise analysis of the open-loop stability of the unified model is presented and a straightforward yet efficient procedure for identifying several of its parameters is introduced. This identification procedure is designed to be convenient and can be carried out in shallow waters, such as test pools, while its results are applicable to the deeper water model as well. To validate the procedure, experimental values obtained from an electromechanical VBS actuated device are used. Closed-loop control of the electromechanical VBS actuated device is conducted through simulation and experimental tests. The results confirm the effectiveness of the proposed unified model and the parameter identification methodology.
2023
Authors
dos Santos, PL; Azevedo Perdicoulis, TP; Salgado, PA; Ferreira, BM; Cruz, NA;
Publication
OCEANS 2023 - LIMERICK
Abstract
A kernel regressor to estimate a six-degree-of-fredoom non linear model of an autonomous underwater vehicle is proposed. Although this estimator assumes that the model coefficients are linear combinations of basis functions, it circumvents the problem of specifying the basis functions by using the kernel trick. The Gaussian radial basis function is the chosen kernel, with the Kernel matrix being regularized by its principal components. The variance of the Gaussian radial basis function and the number of principal components are hyper-parameters to be determined by the minimisation of a final prediction error criterion and using the training data. A simulated autonomous underwater vehicle is proposed was used as case study.
2023
Authors
Oliveira, AJ; Ferreira, BM; Cruz, NA;
Publication
OCEANS 2023 - LIMERICK
Abstract
Blob features are particularly common in acoustic imagery, as isolated objects (e.g., moorings, mines, rocks) appear as blobs in the acquired images. This work focuses the application of the SIFT, SURF, KAZE and U-SURF feature extraction algorithms for blob feature tracking towards Simultaneous Localization and Mapping applications. We introduce a modified feature extraction and matching pipeline intended to improve feature detection and matching precision, tackling performance deterioration caused by the differences between optical and acoustic imagery. Experimental evaluation was undertaken resorting to datasets collected from a water tank structure.
2023
Authors
Gaspar, AR; Nunes, A; Matos, A;
Publication
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1
Abstract
The underwater environment has some structures that still need regular inspection. However, the nature of this environment presents a number of challenges in achieving accurate vehicle position and consequently successful image similarity detection. Although there are some factors - water turbidity or light attenuation - that degrade the quality of the captured images, visual sensors have shown a strong impact on mission scenarios - close range operations. Therefore, the purpose of this paper is to study whether these data are capable of addressing the aforementioned underwater challenges on their own. Considering the lack of available data in this context, a typical underwater scenario was recreated using the Stonefish simulator. Experiments were conducted on two predefined trajectories containing appearance scene changes. The loop closure situations provided by the bag-of-words (BoW) approach are correctly detected, but it is sensitive to some severe conditions.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.