Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CRAS

2015

CONTROLO’2014 – Proceedings of the 11th Portuguese Conference on Automatic Control

Authors
Moreira, AP; Matos, A; Veiga, G;

Publication
Lecture Notes in Electrical Engineering

Abstract

2015

Lecture Notes in Electrical Engineering: Preface

Authors
Moreira, AP; Matos, A; Veiga, G;

Publication
Lecture Notes in Electrical Engineering

Abstract

2015

Calibration Method for Underwater Visual Ground-Truth System

Authors
Faria, A; Almeida, J; Dias, A; Martins, A; Silva, E;

Publication
OCEANS 2015 - GENOVA

Abstract
This work presents an automatic calibration method for a vision based external underwater ground-truth positioning system. These systems are a relevant tool in benchmarking and assessing the quality of research in underwater robotics applications. A stereo vision system can in suitable environments such as test tanks or in clear water conditions provide accurate position with low cost and flexible operation. In this work we present a two step extrinsic camera parameter calibration procedure in order to reduce the setup time and provide accurate results. The proposed method uses a planar homography decomposition in order to determine the relative camera poses and the determination of vanishing points of detected lines in the image to obtain the global pose of the stereo rig in the reference frame. This method was applied to our external vision based ground-truth at the INESC TEC/Robotics test tank. Results are presented in comparison with an precise calibration performed using points obtained from an accurate 3D LIDAR modelling of the environment.

2015

Decentralized Target Tracking based on Multi-Robot Cooperative Triangulation

Authors
Dias, A; Capitan, J; Merino, L; Almeida, J; Lima, P; Silva, E;

Publication
2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA)

Abstract
Target tracking with bearing-only sensors is a challenging problem when the target moves dynamically in complex scenarios. Besides the partial observability of such sensors, they have limited field of views, occlusions can occur, etc. In those cases, cooperative approaches with multiple tracking robots are interesting, but the different sources of uncertain information need to be considered appropriately in order to achieve better estimates. Even though there exist probabilistic filters that can estimate the position of a target dealing with uncertainties, bearing-only measurements bring usually additional problems with initialization and data association. In this paper, we propose a multi-robot triangulation method with a dynamic baseline that can triangulate bearing-only measurements in a probabilistic manner to produce 3D observations. This method is combined with a decentralized stochastic filter and used to tackle those initialization and data association issues. The approach is validated with simulations and field experiments where a team of aerial and ground robots with cameras track a dynamic target.

2015

Formation control driven by cooperative object tracking

Authors
Lima, PU; Ahmad, A; Dias, A; Conceicao, AGS; Moreira, AP; Silva, E; Almeida, L; Oliveira, L; Nascimento, TP;

Publication
ROBOTICS AND AUTONOMOUS SYSTEMS

Abstract
In this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.

2015

High-Accuracy Low-Cost RTK-GPS for an Unmannned Surface Vehicle

Authors
Matias, B; Oliveira, H; Almeida, J; Dias, A; Ferreira, H; Martins, A; Silva, E;

Publication
OCEANS 2015 - GENOVA

Abstract
This work presents a low cost RTK-GPS system for localization of unmanned surface vehicles. The system is based on the use of standard low cost L1 band receivers and in the RTKlib open source software library. Mission scenarios with multiple robotic vehicles are addressed as the ones envisioned in the ICARUS search and rescue case where the possibility of having a moving RTK base on a large USV and multiple smaller vehicles acting as rovers in a local communication network allows for local relative localization with high quality. The approach is validated in operational conditions with results presented for moving base scenario. The system was implemented in the SWIFT USV with the ROAZ autonomous surface vehicle acting as a moving base. This setup allows for the performing of a missions in a wider range of environments and applications such as precise 3D environment modeling in contained areas and multiple robot operations.

  • 90
  • 167