2016
Authors
Saleiro, P; Teixeira, J; Soares, C; Oliveira, EC;
Publication
Advances in Information Retrieval - 38th European Conference on IR Research, ECIR 2016, Padua, Italy, March 20-23, 2016. Proceedings
Abstract
We present a dynamic web tool that allows interactive search and visualization of large news archives using an entity-centric approach. Users are able to search entities using keyword phrases expressing news stories or events and the system retrieves the most relevant entities to the user query based on automatically extracted and indexed entity profiles. From the computational journalism perspective, TimeMachine allows users to explore media content through time using automatic identification of entity names, jobs, quotations and relations between entities from co-occurrences networks extracted from the news articles. TimeMachine demo is available at http://maquinadotempo.sapo.pt/. © Springer International Publishing Switzerland 2016.
2016
Authors
Pinto, F; Soares, C; Mendes Moreira, J;
Publication
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2016, PT I
Abstract
The selection of metafeatures for metalearning (MtL) is often an ad hoc process. The lack of a proper motivation for the choice of a metafeature rather than others is questionable and may originate a loss of valuable information for a given problem (e.g., use of class entropy and not attribute entropy). We present a framework to systematically generate metafeatures in the context of MtL. This framework decomposes a metafeature into three components: meta-function, object and post-processing. The automatic generation of metafeatures is triggered by the selection of a meta-function used to systematically generate metafeatures from all possible combinations of object and post-processing alternatives. We executed experiments by addressing the problem of algorithm selection in classification datasets. Results show that the sets of systematic metafeatures generated from our framework are more informative than the non-systematic ones and the set regarded as state-of-the-art.
2017
Authors
Cerqueira, V; Torgo, L; Soares, C;
Publication
ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT I
Abstract
Utility companies rely on solar radiation forecasting models to control the supply and demand of energy as well as the operability of the grid. They use these predictive models to schedule power plan operations, negotiate prices in the electricity market and improve the performance of solar technologies in general. This paper proposes a novel method for global horizontal irradiance forecasting. The method is based on an ensemble approach, in which individual competing models are arbitrated by a metalearning layer. The goal of arbitrating individual forecasters is to dynamically combine them according to their aptitude in the input data. We validate our proposed model for solar radiation forecasting using data collected by a real-world provider. The results from empirical experiments show that the proposed method is competitive with other methods, including current state-of-the-art methods used for time series forecasting tasks.
2013
Authors
Domingues, MA; Jorge, AM; Soares, C;
Publication
INFORMATION PROCESSING & MANAGEMENT
Abstract
Traditionally, recommender systems for the web deal with applications that have two dimensions, users and items. Based on access data that relate these dimensions, a recommendation model can be built and used to identify a set of N items that will be of interest to a certain user. In this paper we propose a multidimensional approach, called DaVI (Dimensions as Virtual Items), that consists in inserting contextual and background information as new user-item pairs. The main advantage of this approach is that it can be applied in combination with several existing two-dimensional recommendation algorithms. To evaluate its effectiveness, we used the DaVI approach with two different top-N recommender algorithms, Item-based Collaborative Filtering and Association Rules based, and ran an extensive set of experiments in three different real world data sets. In addition, we have also compared our approach to the previously introduced combined reduction and weight post-filtering approaches. The empirical results strongly indicate that our approach enables the application of existing two-dimensional recommendation algorithms in multidimensional data, exploiting the useful information of these data to improve the predictive ability of top-N recommender systems.
2017
Authors
Vilalta, R; Giraud Carrier, CG; Brazdil, P; Soares, C;
Publication
Encyclopedia of Machine Learning and Data Mining
Abstract
2017
Authors
de Sa, CR; Soares, C; Knobbe, A; Cortez, P;
Publication
EXPERT SYSTEMS
Abstract
The problem of Label Ranking is receiving increasing attention from several research communities. The algorithms that have been developed/adapted to treat rankings of a fixed set of labels as the target object, including several different types of decision trees (DT). One DT-based algorithm, which has been very successful in other tasks but which has not been adapted for label ranking is the Random Forests (RF) algorithm. RFs are an ensemble learning method that combines different trees obtained using different randomization techniques. In this work, we propose an ensemble of decision trees for Label Ranking, based on Random Forests, which we refer to as Label Ranking Forests (LRF). Two different algorithms that learn DT for label ranking are used to obtain the trees. We then compare and discuss the results of LRF with standalone decision tree approaches. The results indicate that the method is highly competitive.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.