2014
Authors
Hussain, B; Kianpour, I; Tavares, VG; Mendonca, HS; Miskovic, G; Radosavljevic, G; Petrovic, VV;
Publication
2014 IEEE INTERNATIONAL CONFERENCE ON WIRELESS FOR SPACE AND EXTREME ENVIRONMENTS (WISEE)
Abstract
This paper presents a planar antenna using low temperature co-fired ceramics (LTCC) substrate for extreme environment applications. An ultra wideband (UWB) elliptical patch antenna was designed and fabricated using an LTCC Ceramtec GC substrate to demonstrate the capabilities of the technology for wideband applications. The simulated results were further validated experimentally. The fabricated antenna provides a peak gain of 5dB over a bandwidth of 4 GHz (3 GHz 7 GHz) with return loss better than -10dB. The radiation pattern is omni-directional in the horizontal plane (theta=90 degrees) over the whole frequency range.
2014
Authors
Kianpour, I; Hussain, B; Tavares, VG; Duarte, C; Mendonca, H; Principe, J;
Publication
2014 IEEE INTERNATIONAL CONFERENCE ON ULTRA-WIDEBAND (ICUWB)
Abstract
The integrate-and-fire model of a biological neuron is an amplitude to time encoding in the spacing between action potentials (spikes). In principle, this encoding can be used to modulate signals in an Impulse Radio Ultra Wide-Band (IRUWB) transmitter suitable for Wireless Sensor Networks (WSN). This paper presents a system level study on power efficiency using MATLAB/ Simulink to evaluate the required energy for an IR-UWB Transmitter using integrate-and-fire encoding technique. Also, a simple but clear comparison with common systems utilizing Nyquist rate Analog-to-Digital Converters (ADC) is presented. This study has been carried out on a band-limited random Gaussian signal and the results show that IR-IF transmitter consumes roughly seven times less energy than a digital UWB transmitter; moreover, in the proposed architecture the need for power hungry ADC is relaxed.
2015
Authors
Kianpour, I; Hussain, B; Tavares, VG; Mendonca, HS;
Publication
2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS)
Abstract
This paper presents a wide input range, low-power operational transconductance amplifier (OTA) in weak inversion. The OTA is implemented with tanh-triplets differential pairs, degenerated by a composite configuration to augment the input linear range, thus reducing further the harmonic distortion. Using MATLAB, the mismatch factor (A) of a typical multi-tanh triplet has been optimised for minimum harmonic distortion. The OTA is designed in UMC 0.13um CMOS technology with 1.2V supply. Simulations show that the input range can be extended to 300 mV, while keeping the HD3 below -80 dB. The average power consumption is 13nW, with an open loop-gain of 76 dB and a unity gain frequency of 250 Hz. The low harmonic distortion OTA can find potential applications in low-power and long time constant filters.
2013
Authors
Pinto, M; Sobreira, H; Paulo Moreira, AP; Mendonca, H; Matos, A;
Publication
MECHATRONICS
Abstract
This paper proposes a new, fast and computationally light weight methodology to pinpoint a robot in a structured scenario. The localisation algorithm performs a tracking routine to pinpoint the robot's pose as it moves in a known map, without the need for preparing the environment, with artificial landmarks or beacons. To perform such tracking routine, it is necessary to know the initial position of the vehicle. This paper describes the tracking routine and presents a solution to pinpoint that initial position in an autonomous way, using a multi-hypotheses strategy. This paper presents experimental results on the performance of the proposed method applied in two different scenarios: (1) in the Middle Size Soccer Robotic League (MSL), using artificial vision data from an omnidirectional robot and (2) in indoor environments using 3D data from a tilting Laser Range Finder of a differential drive robot (called RobVigil). This paper presents results comparing the proposed methodology and an Industrial Positioning System (the Sick NAV350), commonly used to locate Autonomous Guided Vehicles (AGVs) with a high degree of accuracy in industrial environments.
2014
Authors
Matos, JS; Alves, JC; Mendonca, HS; Araujo, AJ;
Publication
Proceedings of the 2014 29th Conference on Design of Circuits and Integrated Systems, DCIS 2014
Abstract
The paper presents the approach followed at the Faculty of Engineering of the University of Porto, to introduce design automation tools and structured design techniques in the first course on digital system design of our Integrated Master in Electrical and Computer Engineering. Digital Systems Laboratory is an introductory course on digital design, with the classical task of teaching Boolean algebra and combinational and sequential circuit design, using gates, flip-flops and medium complexity components/function blocks like counters and shift-registers. The need to cope with new curriculum requirements and modern digital design demands, motivated an extensive reformulation of the course contents and organization, leading to the introduction of the use of hardware description languages and synthesis tools, in order to implement small systems, of increasingly complex nature, on an FPGA platform. At the same time its coverage was extended to include low-level processor architecture issues, and to teach assembly programming for the MIPS processor. The paper describes how this reformulation was carried out. It presents the course contents and timeline, and discusses the main choices that were made. The paper also describes the laboratory experiments that were developed and discusses some of the challenges and results obtained so far. © 2014 IEEE.
2015
Authors
Kianpour, I; Hussain, B; Tavares, VG; Mendonca, HS;
Publication
2015 Conference on Design of Circuits and Integrated Systems (DCIS)
Abstract
An integrate-and-fire modulator (IFM) is designed for power scavenging systems like: Wireless Sensor Network (WSN) and Radio Frequency Identification (RFID) sensor tags. The circuit works with a clock in order to be able to be synchronized with microprocessors, which must be used to reconstruct the signal. The modulator is simulated using 130nm CMOS technology and the resulting power consumption is around 14nW at a clock frequency of 10 kHz. The OTA individually dissipates roughly 13nW. Signal reconstruction resulted in a 9.2 ENOB.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.